久久综合丝袜日本网手机版,日韩欧美中文字幕在线三区,亚洲精品国产品国语在线,极品在线观看视频婷婷

      • 數(shù)學(xué)的期末考試試卷

        時(shí)間:2022-06-22 14:43:23 考試 我要投稿

        關(guān)于數(shù)學(xué)的期末考試試卷

          第Ⅰ卷 (選擇題 共50分)

        關(guān)于數(shù)學(xué)的期末考試試卷

          一、選擇 題:本大題共10小題,每小題5分,共50分.在每小題給出的四個(gè)選項(xiàng)中有且只有一項(xiàng)是符合題目要求的,把答案填在答題卡的相應(yīng)位置。

          1.已知平面向量 , ,且 ,則實(shí)數(shù) 的值為

          A. B. C. D.

          2.設(shè)集合 , ,若 ,則實(shí)數(shù) 的值為

          A. B. C. D.

          3.已知直線 平面 ,直線 ,則 是 的

          A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件

          4. 定義: .若復(fù)數(shù) 滿足 ,則 等于

          A. B. C. D.

          5.函數(shù) 在 處的切線方程是

          A. B. C. D.

          6. 某程序框圖如右圖所示,現(xiàn)輸入如下 四個(gè)函數(shù),

          則可以輸出的函數(shù)是

          A. B. C. D.

          7. 若函數(shù) 的圖象(部分)如圖所示,

          則 和 的取值是

          A. B.

          C. D.

          8. 若函數(shù) 的零點(diǎn)與 的零點(diǎn)之差的絕對(duì)值不超過 ,則 可以是

          A. B. C. D.

          9.已知 ,若方程 存在三個(gè)不等的實(shí)根 ,則 的取值范圍是

          A. B. C. D.

          10.已知集合 , 。若存在實(shí)數(shù) 使得 成立,稱點(diǎn) 為£點(diǎn),則£點(diǎn)在平面區(qū)域 內(nèi)的個(gè)數(shù)是

          A. 0 B.1 C .2 D. 無數(shù)個(gè)

          第二卷(非選擇題共100分)

          二、填空題:本大題共5小題,每小題4分,共20分. 把答案填在答題卡上.

          11. 已知隨機(jī)變量 ,若 ,則 等于 ******.

          12.某幾何體的三視圖如下右圖所示,則這個(gè)幾何體的體積是 ****** .

          13. 已知拋物線 的準(zhǔn)線 與雙曲線 相切,

          則雙曲線 的離心率 ****** .

          14.在平面直角坐標(biāo)系中,不等式組 所表示的平面區(qū)域的面積是9,則實(shí)數(shù) 的值為 ****** .

          15. 已知不等式 ,若對(duì)任意 且 ,該不等式恒成立,則實(shí)

          數(shù) 的取值范圍是 ****** .

          三、解答題:本大題共6小題,共80分.解答應(yīng)寫出文字說明,演算步驟或證明過程.

          16.(本小題滿分13分)

          在等差數(shù)列 中, ,其前 項(xiàng)和為 ,等比數(shù)列 的各項(xiàng)均為正數(shù), ,公比為 ,且 , .

          (Ⅰ)求 與 ;

          (Ⅱ)證明: .

          17. (本小題滿分13分)

          已知向量

          (Ⅰ)求 的解析式;

          (Ⅱ)求由 的圖象、 軸的正半軸及 軸的正半軸三者 圍成圖形的面積。

          18. (本小題滿分13分)圖一,平面四邊形 關(guān)于直線 對(duì)稱, , , .把 沿 折起(如圖二),使二面角 的余弦值等于 .

          對(duì)于圖二,完成以下各 小題:

          (Ⅰ)求 兩點(diǎn)間的距離;

          (Ⅱ)證明: 平面 ;

          (Ⅲ)求直線 與平面 所成角的正弦值.

          19. (本小題滿分13分) 二十世紀(jì)50年代,日本熊本縣水俁市的許多居民都患了運(yùn)動(dòng)失調(diào)、四肢麻木等癥狀,人們把它稱為水俁病.經(jīng)調(diào)查發(fā)現(xiàn)一家工廠排出的廢水中含有甲基汞,使魚類受到污染.人們長(zhǎng)期食用含高濃度甲基汞的魚類引起汞中毒. 引起世人對(duì)食品安全的關(guān)注.《中華人民共和國(guó)環(huán)境保護(hù)法》規(guī)定食品的汞含量不得超過1.00ppm.

          羅非魚是體型較大,生命周期長(zhǎng)的食肉魚,其體內(nèi)汞含量比其他魚偏高.現(xiàn)從一批羅非魚中隨機(jī)地抽出15條作樣本,經(jīng)檢測(cè)得各條魚的汞含量的莖葉圖(以小數(shù)點(diǎn)前一位數(shù)字為莖,小數(shù)點(diǎn)后一位數(shù)字為葉)如下:

          (Ⅰ)若某檢查人員從這15條魚中,隨機(jī)地抽出3條,求恰有1條魚汞含量超標(biāo)的概率;

          (Ⅱ)以此15條魚的樣本數(shù)據(jù).若從這批數(shù)量很大的魚中任選3條魚,記表示抽到的魚汞含量超標(biāo)的條數(shù),求的分布列及E

          20. (本小題滿分14分)

          已知焦點(diǎn)在 軸上的橢圓 過點(diǎn) ,且離心率為 , 為橢圓 的左頂點(diǎn).

          (1)求橢圓 的標(biāo)準(zhǔn)方程;

          (2)已知過點(diǎn) 的直線 與橢圓 交于 , 兩點(diǎn).

         、 若直線 垂直于 軸,求 的大小;

         、 若直線 與 軸不 垂直,是否存在直線 使得 為等腰三角形?如果存在,求出直線 的方程;如果不存在,請(qǐng)說明理由.

          21. (本小題共14分)

          已知 是由滿足下述條件的函數(shù)構(gòu)成的集合:對(duì)任意 ,

         、 方程 有實(shí)數(shù)根;② 函數(shù) 的導(dǎo)數(shù) 滿足 .

          普通高中20122013中聯(lián)合考試

          高三數(shù)

        解答題

          16.解:(Ⅰ)設(shè) 的公差為 ,。

          因?yàn)?所以 3分

          解得 或 (舍), .。

          故 , .6分

          (Ⅱ)因?yàn)?。

          所以 .9分

          故

          11分

          因?yàn)?,所以 ,于是 ,。

          所以 .

          即 13分

          17.解:(Ⅰ) 2分

          4分

          6分

          ,

          。 7分

          (Ⅱ)令 =0,解得

          易知 的圖象與 軸正半軸的第一個(gè)交點(diǎn)為 。 9分

          所以 的圖象、 軸的正半軸及形的面積

          。11分

          13分

          18.解:(Ⅰ)取 的中點(diǎn) ,連接 ,

          由 ,得:

          就是二面角 的平面角,即 2分

          在 中,解得 ,又

          ,解得 。 4分

          (Ⅱ)由 ,

          , ,

          , 又 , 平面 .8分

          (Ⅲ)方法一:由(Ⅰ)知 平面 , 平面

          平面 平面 ,平面 平面 ,

          就是 與平面 所成的角。11分

          .13分

          方 法二:設(shè)點(diǎn) 到平面 的距離為 ,。

          ∵ , ,

          , 11分

          于是 與平面 所成角 的正弦為 .13分

          方法三:以 所在直線分別為 軸, 軸和 軸建立空間直角坐標(biāo)系 ,。

          則 .

          設(shè)平面 的法向量為 ,則

          , , , ,

          取 ,則 , 11分

          于是 與平面 所成角 的正弦 .13分

          19.解:(I)記15條魚中任選3條恰好有1條魚汞含量超標(biāo)為事件A

          則 .

          15條魚中任選3條恰好有1條魚汞含量超標(biāo)的概率為 5分

          (II)解法一:依題意可知,這批羅非魚中汞含量超標(biāo)的魚的概率P= ,7分

          所有的取值為0,1,2,3,其分布列如下:

          0123

          P()

          11分

          所以~ , 12分

          所以E=1. 13分

          解法 二:依題意可知,這批羅非魚中汞含量超標(biāo)的魚的概率P= , 7分

          所有的取值為0,1,2,3,其分布列如下:

          0123

          P()

          11分

          所以E= . 13分

          20.解:(Ⅰ)設(shè)橢圓 的標(biāo)準(zhǔn)方程為 ,且 .

          由題意可知: , . 2分

          解得 .

          橢圓 的標(biāo)準(zhǔn)方程為 . 3分

          (Ⅱ)由(Ⅰ)得 .設(shè) .

          (ⅰ)當(dāng)直線 垂直于 軸時(shí),直線 的方程為 .

          由 解得: 或

          即 (不妨設(shè)點(diǎn) 在 軸上方). 5分

          則直線 的斜率 ,直線 的斜率 .

          ∵ ,得 .

          . 6分

          (ⅱ)當(dāng)直線 與 軸不垂直時(shí),由題意可設(shè)直線 的方程為 .

          由 消去 得: .

          因?yàn)?點(diǎn) 在橢圓 的內(nèi)部,顯然 .

          8分

          因?yàn)?, , ,

          所以

          . 即 為直角三角形. 11分

          假設(shè)存在直線 使得 為等腰三角形,則 .

          取 的中點(diǎn) ,連接 ,則 .

          記點(diǎn) 為 .

          另一方面,點(diǎn) 的橫坐標(biāo) ,。

          點(diǎn) 的縱坐標(biāo) .

          又

          故 與 不垂直,矛盾.

          所以 當(dāng)直線 與 軸不垂直時(shí),不存在直線 使得 為等腰三角形.

          13分

          21.解:(Ⅰ)因?yàn)棰佼?dāng) 時(shí), ,。

          所以方程 有實(shí)數(shù)根0;

         、 ,

          所以 ,滿足條件 ;

          由①②,函數(shù) 是集合 中的元素. 5分

          (Ⅱ)假設(shè)方程 存在兩個(gè)實(shí)數(shù)根 , ,。

          則 , .

          不妨設(shè) ,根據(jù)題意存在 ,。

          滿足 .

          因?yàn)?, ,且 ,所以 .

          與已知 矛盾.又 有實(shí)數(shù)根,。

          所以方程 有且只有一個(gè)實(shí)數(shù)根. 10分

          (Ⅲ)當(dāng) 時(shí),結(jié)論顯然成立; 11分

          當(dāng) ,不妨設(shè) .

          因?yàn)?,且 所以 為增函數(shù),那么 .

          又因?yàn)?,所以函數(shù) 為減函數(shù)。

        【數(shù)學(xué)的期末考試試卷】相關(guān)文章:

        期末考試試卷分析08-04

        期末考試試卷分析03-01

        五年級(jí)上冊(cè)期末考試卷數(shù)學(xué)07-09

        小升初模擬試卷數(shù)學(xué)07-02

        數(shù)學(xué)小升初模擬試卷07-02

        2017四年級(jí)下冊(cè)數(shù)學(xué)期末考試卷試卷及答案06-22

        (熱)期末考試試卷分析07-19

        期末考試試卷分析(熱)07-19

        期末考試試卷分析熱10-07

        (優(yōu)選)期末考試試卷分析08-11