久久综合丝袜日本网手机版,日韩欧美中文字幕在线三区,亚洲精品国产品国语在线,极品在线观看视频婷婷

      • 初一數(shù)學(xué)公式練習題及答案

        時間:2022-06-27 13:23:33 其他 我要投稿
        • 相關(guān)推薦

        初一數(shù)學(xué)有關(guān)公式練習題及答案

          運用公式法

        初一數(shù)學(xué)有關(guān)公式練習題及答案

          1.(1)觀察多項式x2-25.9x-y2,它們有什么共同特證?

          (2)將它們分別寫成兩個因式的乘積,說明你的理由,并與同伴交流。

          2.把乘法方式

          (a+b)2=a2+2ab+b2, (a-b)2=a2-2ab+b2,反過來,就得到

          a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2

          上面這個變化過程是分解因式嗎?說明你的理由。

          3.把下列各式分解因式:

          (1)25-16x2;    (2)

          (3)9(m+n)2-(m-n)2;  (4) 2x3-8x;

          (5)x2+14x+49;   (6)(m+m)2-6(m+n)+9

          (7)3ax2+6axy+3ay2;   (8)-x2-4y2+4xy

          4.把下列各式分解因式:

          (1) ;  (2)(a+b)2-1;  (3)-(x+2)2+16(x-1)2;

          (4)

          5.把下列各式分解因式:

          (1)m2-12m+36;  (2)8a-4a2-4;

          (3) ; (4) 。

          6.求證(x+1)(x+2)(x+3)(x+4)+1是一個完全平方式。

          7.已知a,b,c是△ABC的三條邊,且滿足a2+b2+c2-ab-bc-ca=0試判斷△ABC的形狀。

          8.設(shè)x+2z=3y,試判斷x2-9y2+4z2+4xz的值是不是定值?

          參考答案

          1.(1)多項式的各項都能寫成平方的形式。如x2-25中:x2本身是平方的形式,25=52也是平方的形式;9x-y2也是如此。

          (2)逆用乘法公式(a+b)(a-b)=a2-b2,可知x2-25= x2-52=(x+5)(x-5),9x2-y2=(3x)2-y2=(3x+y)(3x-y).

          2. a2±2ab+b2=(a±b)2是分解因式。因為(a+b)2是因式的乘積的形式,(a-b)2也是因式的乘積的形式。

          3.

          (1)25-16x2=(5+4x)(5-4x) (2) =

          (3)9(m+n)2-(m-n)2=4(2m+n)(m+2n)

          (4)2x3-8x=2x(x2-4)=2x(x2-2x)=2x(x+2)(x-2)

          (5)x2+14x+49= x2+2×7x+72=(x+7)2

          (6)(m+m)2-6(m+n)+9=[(m+n)-3]2=(m+n-3)2

          (7)3ax2+6axy+3ay2=3a(x2+2xy+y2)=3a(x+y)2

          (8)-x2-4y2+4xy=-(x-2y)2

          4.(1) ; (2)(a+b)2-1=(a+b+1)(a+b-1)

          (3)-(x+2)2+16(x-1)2=3(x-2)(5x-2);

          (4)

          5.(1)m2-12m+36=(m-6)2; (2)8a-4a2-4=-4(a-1)2;

          (3) ;

          (4)

          6.證明一:原式=(x2+5x+4)(x2+5x+6)+1

          =(x2+5x)2+10(x2+5x)+25

          =(x2+5x+5)2 ∴原命題成立

          證明二:原式=[(x+1)(x+4)][(x+2)(x+3)]+1

          =(x2+5x+4)( x2+5x+6)+ 1

          令a=x2+5x+4,則x2+5x+6=a+2

          原式=a(a+2)+1=(a+1)2

          即(x+1)(x+2)(x+3)(x+4)+1=(x2+5x+5)2

          證明三:原式=(x2+5x+4)(x2+5x+6)+1

          令

          原式=(x2+5x+5-1)(x2+5x+5+1)+1

          =(m-1)(m+1)+1=m2=(x2+5x+5)2

          7.∵a2+b2+c2-ab-bc-ca=0

          ∴2a2+2b2+2c2-2ab-2bc-2ac=0

          即a2-2ab+b2+b2-2bc+c2+a2-2ac+c2=0

          ∴(a-b) 2+(b-c) 2+(a-c) 2=0

          ∵(a-b) 2≥0,(b-c) 2≥0,(a-c) 2≥0

          ∴a-b=0,b-c=0,a-c=0

          ∴a=b,b=c,a=c

          ∴這個三角形是等邊三角形.

          8.當x+2z=3y時,x2-9y2+4z2+4xz的值為定值0。