久久综合丝袜日本网手机版,日韩欧美中文字幕在线三区,亚洲精品国产品国语在线,极品在线观看视频婷婷

      • 初中數(shù)學(xué)的知識點(diǎn)總結(jié)

        時(shí)間:2022-12-12 17:03:05 總結(jié)范文 我要投稿

        初中數(shù)學(xué)的知識點(diǎn)總結(jié)

          總結(jié)在一個(gè)時(shí)期、一個(gè)年度、一個(gè)階段對學(xué)習(xí)和工作生活等情況加以回顧和分析的一種書面材料,他能夠提升我們的書面表達(dá)能力,我想我們需要寫一份總結(jié)了吧。你想知道總結(jié)怎么寫嗎?以下是小編整理的初中數(shù)學(xué)的知識點(diǎn)總結(jié),僅供參考,希望能夠幫助到大家。

        初中數(shù)學(xué)的知識點(diǎn)總結(jié)

        初中數(shù)學(xué)的知識點(diǎn)總結(jié)1

          知識點(diǎn)總結(jié)

          1.定義:兩組對邊分別平行的四邊形叫平行四邊形

          2.平行四邊形的性質(zhì)

          (1)平行四邊形的對邊平行且相等;

          (2)平行四邊形的鄰角互補(bǔ),對角相等;

          (3)平行四邊形的對角線互相平分;

          3.平行四邊形的判定

          平行四邊形是幾何中一個(gè)重要內(nèi)容,如何根據(jù)平行四邊形的性質(zhì),判定一個(gè)四邊形是平行四邊形是個(gè)重點(diǎn),下面就對平行四邊形的五種判定方法,進(jìn)行劃分:

          第一類:與四邊形的對邊有關(guān)

          (1)兩組對邊分別平行的四邊形是平行四邊形;

         。2)兩組對邊分別相等的四邊形是平行四邊形;

         。3)一組對邊平行且相等的四邊形是平行四邊形;

          第二類:與四邊形的對角有關(guān)

         。1)兩組對角分別相等的`四邊形是平行四邊形;

          第三類:與四邊形的對角線有關(guān)

         。1)對角線互相平分的四邊形是平行四邊形

          常見考法

         。1)利用平行四邊形的性質(zhì),求角度、線段長、周長;

         。2)求平行四邊形某邊的取值范圍;

          (3)考查一些綜合計(jì)算問題;

         。4)利用平行四邊形性質(zhì)證明角相等、線段相等和直線平行;

          (5)利用判定定理證明四邊形是平行四邊形。

          誤區(qū)提醒

         。1)平行四邊形的性質(zhì)較多,易把對角線互相平分,錯(cuò)記成對角線相等;

         。2)“一組對邊平行且相等的四邊形是平行四邊形”錯(cuò)記成“一組對邊平行,一組對邊相等的四邊形是平行四邊形”后者不是平行四邊形的判定定理,它只是個(gè)等腰梯形。

        初中數(shù)學(xué)的知識點(diǎn)總結(jié)2

          1、一元二次方程解法:

          (1)配方法:(X±a)2=b(b≥0)注:二次項(xiàng)系數(shù)必須化為1

          (2)公式法:aX2+bX+C=0(a≠0)確定a,b,c的值,計(jì)算b2-4ac≥0

          若b2-4ac>0則有兩個(gè)不相等的.實(shí)根,若b2-4ac=0則有兩個(gè)相等的實(shí)根,若b2-4ac<0則無解

          若b2-4ac≥0則用公式X=-b±√b2-4ac/2a注:必須化為一般形式

          (3)分解因式法

         、偬峁蚴椒ǎ簃a+mb=0→m(a+b)=0

          平方差公式:a2-b2=0→(a+b)(a-b)=0

         、谶\(yùn)用公式法:

          完全平方公式:a2±2ab+b2=0→(a±b)2=0

         、凼窒喑朔

          2、銳角三角函數(shù)定義

          銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的銳角三角函數(shù)。

          正弦(sin):對邊比斜邊,即sinA=a/c;

          余弦(cos):鄰邊比斜邊,即cosA=b/c;

          正切(tan):對邊比鄰邊,即tanA=a/b;

          余切(cot):鄰邊比對邊,即cotA=b/a;

          3、積的關(guān)系

          sinα=tanα·cosα

          cosα=cotα·sinα

          tanα=sinα·secα

          cotα=cosα·cscα

          secα=tanα·cscα

          cscα=secα·cotα

          4、倒數(shù)關(guān)系

          tanα·cotα=1

          sinα·cscα=1

          cosα·secα=1

          5、兩角和差公式

          sin(A+B) = sinAcosB+cosAsinB

          sin(A-B) = sinAcosB-cosAsinB

          cos(A+B) = cosAcosB-sinAsinB

          cos(A-B) = cosAcosB+sinAsinB

          tan(A+B) = (tanA+tanB)/(1-tanAtanB)

          tan(A-B) = (tanA-tanB)/(1+tanAtanB)

          cot(A+B) = (cotAcotB-1)/(cotB+cotA)

          cot(A-B) = (cotAcotB+1)/(cotB-cotA)

        初中數(shù)學(xué)的知識點(diǎn)總結(jié)3

          一、基本知識

          一、數(shù)與代數(shù)

          A、數(shù)與式:

          1、有理數(shù):①整數(shù)→正整數(shù),0,負(fù)整數(shù);

          ②分?jǐn)?shù)→正分?jǐn)?shù),負(fù)分?jǐn)?shù)

          數(shù)軸:①畫一條水平直線,在直線上取一點(diǎn)表示0(原點(diǎn)),選取某一長度作為單位長度,規(guī)定直線上向右的方向?yàn)檎较,就得到?shù)軸。

          ②任何一個(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來表示。

         、廴绻麅蓚(gè)數(shù)只有符號不同,那么我們稱其中一個(gè)數(shù)為另外一個(gè)數(shù)的相反數(shù),也稱這兩個(gè)數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個(gè)點(diǎn),位于原點(diǎn)的兩側(cè),并且與原點(diǎn)距離相等。

         、軘(shù)軸上兩個(gè)點(diǎn)表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù)。

          絕對值:①在數(shù)軸上,一個(gè)數(shù)所對應(yīng)的點(diǎn)與原點(diǎn)的距離叫做該數(shù)的絕對值。

         、谡龜(shù)的絕對值是他的本身、負(fù)數(shù)的絕對值是他的相反數(shù)、0的絕對值是0。兩個(gè)負(fù)數(shù)比較大小,絕對值大的反而小。

          有理數(shù)的運(yùn)算:帶上符號進(jìn)行正常運(yùn)算。

          加法:

          ①同號相加,取相同的符號,把絕對值相加。

          ②異號相加,絕對值相等時(shí)和為0;絕對值不等時(shí),取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的絕對值。

         、垡粋(gè)數(shù)與0相加不變。

          減法:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。

          乘法:①兩數(shù)相乘,同號得正,異號得負(fù),絕對值相乘。

         、谌魏螖(shù)與0相乘得0。

         、鄢朔e為1的兩個(gè)有理數(shù)互為倒數(shù)。

          除法:①除以一個(gè)數(shù)等于乘以一個(gè)數(shù)的倒數(shù)。

          ②0不能作除數(shù)。

          乘方:求N個(gè)相同因數(shù)A的積的運(yùn)算叫做乘方,乘方的結(jié)果叫冪,A叫底數(shù),N叫次數(shù)或指數(shù)。

          混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。

          2、實(shí)數(shù)

          無理數(shù)

          無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù),例如:π=3.1415926…

          平方根:①如果一個(gè)正數(shù)X的平方等于A,那么這個(gè)正數(shù)X就叫做A的算術(shù)平方根。

         、谌绻粋(gè)數(shù)X的平方等于A,那么這個(gè)數(shù)X就叫做A的平方根。

          ③一個(gè)正數(shù)有2個(gè)平方根;0的平方根為0;負(fù)數(shù)沒有平方根。

         、芮笠粋(gè)數(shù)A的平方根運(yùn)算,叫做開平方,其中A叫做被開方數(shù)。

          立方根:①如果一個(gè)數(shù)X的立方等于A,那么這個(gè)數(shù)X就叫做A的立方根。

         、谡龜(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。

         、矍笠粋(gè)數(shù)A的立方根的運(yùn)算叫開立方,其中A叫做被開方數(shù)。

          實(shí)數(shù):①實(shí)數(shù)分有理數(shù)和無理數(shù)。

         、谠趯(shí)數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對值的意義完全一樣;

         、勖恳粋(gè)實(shí)數(shù)都可以在數(shù)軸上的一個(gè)點(diǎn)來表示。

          3、代數(shù)式

          代數(shù)式:單獨(dú)一個(gè)數(shù)或者一個(gè)字母也是代數(shù)式。

          合并同類項(xiàng):①所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng),叫做同類項(xiàng);②把同類項(xiàng)合并成一項(xiàng)就叫做合并同類項(xiàng)。

         、墼诤喜⑼愴(xiàng)時(shí),我們把同類項(xiàng)的系數(shù)相加,字母和字母的指數(shù)不變。

          4、整式與分式

          整式:①數(shù)與字母的乘積的代數(shù)式叫單項(xiàng)式,幾個(gè)單項(xiàng)式的和叫多項(xiàng)式,單項(xiàng)式和多項(xiàng)式統(tǒng)稱整式。

         、谝粋(gè)單項(xiàng)式中,所有字母的指數(shù)和叫做這個(gè)單項(xiàng)式的次數(shù)。

         、垡粋(gè)多項(xiàng)式中,次數(shù)最高的項(xiàng)的次數(shù)叫做這個(gè)多項(xiàng)式的次數(shù)。

          整式運(yùn)算:加減運(yùn)算時(shí),如果遇到括號先去括號,再合并同類項(xiàng)。

          冪的運(yùn)算:

          A^M+A^N=A^(M+N)

         。ˋ^M)^N=A^(MN

         。

         。ˋ/B)^N=A^N/B^N

          除法一樣。

          整式的乘法:

         、賳雾(xiàng)式與單項(xiàng)式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。

          ②單項(xiàng)式與多項(xiàng)式相乘,就是根據(jù)分配律用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。

          ③多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)乘另外一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加。

          公式兩條:平方差公式:A^2-B^2=(A+B)(A-B);

          完全平方公式:(A+B)^2=A^2+2AB+B^2;(A-B)^2=A^2-2AB+B^2。

          整式的除法:①單項(xiàng)式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個(gè)因式。

          ②多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)分別除以單項(xiàng)式,再把所得的商相加。

          分解因式:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變化叫做把這個(gè)多項(xiàng)式分解因式。

          方法:提公因式法、運(yùn)用公式法、分組分解法、十字相乘法。

          分式:①整式A除以整式B,如果除式B中含有分母,那么這個(gè)就是分式,對于任何一個(gè)分式,分母不為0。

         、诜质降姆肿优c分母同乘以或除以同一個(gè)不等于0的整式,分式的值不變。

          分式的運(yùn)算:

          乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。

          除法:除以一個(gè)分式等于乘以這個(gè)分式的倒數(shù)。

          加減法:①同分母分式相加減,分母不變,把分子相加減。

          ②異分母的分式先通分,化為同分母的分式,再加減。

          分式方程:①分母中含有未知數(shù)的方程叫分式方程。

         、谑狗匠痰姆帜笧0的解稱為原方程的增根。

          B、方程與不等式

          1、方程與方程組

          一元一次方程:①在一個(gè)方程中,只含有一個(gè)未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。

          ②等式兩邊同時(shí)加上或減去或乘以或除以(不為0)一個(gè)代數(shù)式,所得結(jié)果仍是等式。

          解一元一次方程的步驟:去分母,移項(xiàng),合并同類項(xiàng),未知數(shù)系數(shù)化為1。

          二元一次方程:含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1的方程叫做二元一次方程。

          二元一次方程組:兩個(gè)二元一次方程組成的方程組叫做二元一次方程組。

          適合一個(gè)二元一次方程的一組未知數(shù)的值,叫做這個(gè)二元一次方程的一個(gè)解。

          二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程組的解。

          解二元一次方程組的方法:代入消元法;加減消元法。

          一元二次方程:只有一個(gè)未知數(shù),并且未知數(shù)的項(xiàng)的最高系數(shù)為2的方程:ax^2+bx+c=0;

          1)一元二次方程的二次函數(shù)的關(guān)系

          大家已經(jīng)學(xué)過二次函數(shù)(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實(shí)一元二次方程也可以用二次函數(shù)來表示,其實(shí)一元二次方程也是二次函數(shù)的一個(gè)特殊情況,就是當(dāng)Y=0的時(shí)候就構(gòu)成了一元二次方程了。那如果在平面直角坐標(biāo)系中表示出來,一元二次方程就是二次函數(shù)中,圖像與X軸的交點(diǎn)。也就是該方程的解了

          2)一元二次方程的解法

          大家知道,二次函數(shù)有頂點(diǎn)式(-b/2a

          ,4ac-b^2/4a),這大家要記住,很重要,因?yàn)樵谏厦嬉呀?jīng)說過了,一元二次方程也是二次函數(shù)的一部分,所以他也有自己的一個(gè)解法,利用他可以求出所有的一元一次方程的解

          (1)配方法

          利用配方,使方程變?yōu)橥耆椒焦,在用直接開平方法去求出解

          (2)分解因式法

          提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時(shí)候也一樣,利用這點(diǎn),把方程化為幾個(gè)乘積的形式去解

          (3)公式法

          這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={-b+√[b^2-4ac)]}/2a,X2={-b-√[b^2-4ac)]}/2a

          3)解一元二次方程的步驟:

         。1)配方法的步驟:

          先把常數(shù)項(xiàng)移到方程的右邊,再把二次項(xiàng)的系數(shù)化為1,再同時(shí)加上1次項(xiàng)的系數(shù)的一半的平方,最后配成完全平方公式

          (2)分解因式法的步驟:

          把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式

          (3)公式法

          就把一元二次方程的各系數(shù)分別代入,這里二次項(xiàng)的系數(shù)為a,一次項(xiàng)的系數(shù)為b,常數(shù)項(xiàng)的系數(shù)為c

          4)韋達(dá)定理

          利用韋達(dá)定理去了解,韋達(dá)定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a

          也可以表示為x1+x2=-b/a,x1x2=c/a。利用韋達(dá)定理,可以求出一元二次方程中的各系數(shù),在題目中很常用

          5)一元二次方程根的情況

          利用根的判別式去了解,根的判別式可在書面上可以寫為“△”,讀作“diao

          ta”,而△=b2-4ac,這里可以分為3種情況:

          I當(dāng)△>0時(shí),一元二次方程有2個(gè)不相等的實(shí)數(shù)根;

          II當(dāng)△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數(shù)根;

          III當(dāng)△B,則A+C>B+C;

          在不等式中,如果減去同一個(gè)數(shù)(或加上一個(gè)負(fù)數(shù)),不等式符號不改向;

          例如:如果A>B,則A-C>B-C;

          在不等式中,如果乘以同一個(gè)正數(shù),不等式符號不改向;

          例如:如果A>B,則A*C>B*C(C>0);

          在不等式中,如果乘以同一個(gè)負(fù)數(shù),不等號改向;

          例如:如果A>B,則A*C

          如果不等式乘以0,那么不等號改為等號;

          所以在題目中,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘的數(shù)就不等于0,否則不等式不成立;

          3、函數(shù)

          變量:因變量Y,自變量X。

          在用圖像表示變量之間的關(guān)系時(shí),通常用水平方向的數(shù)軸上的點(diǎn)自變量,用豎直方向的數(shù)軸上的點(diǎn)表示因變量。

          一次函數(shù):①若兩個(gè)變量X,Y間的關(guān)系式可以表示成Y=KX+B(B為常數(shù),K不等于0)的形式,則稱Y是X的一次函數(shù)。

          ②當(dāng)B=0時(shí),稱Y是X的正比例函數(shù)。

          一次函數(shù)的圖像:

         、侔岩粋(gè)函數(shù)的自變量X與對應(yīng)的因變量Y的值分別作為點(diǎn)的橫坐標(biāo)與縱坐標(biāo),在直角坐標(biāo)系內(nèi)描出它的對應(yīng)點(diǎn),所有這些點(diǎn)組成的圖形叫做該函數(shù)的圖像。

         、谡壤瘮(shù)Y=KX的圖像是經(jīng)過原點(diǎn)的一條直線。

          ③在一次函數(shù)中,當(dāng)K〈0,B〈O時(shí),則經(jīng)234象限;

          當(dāng)K〈0,B〉0時(shí),則經(jīng)124象限;

          當(dāng)K〉0,B〈0時(shí),則經(jīng)134象限;

          當(dāng)K〉0,B〉0時(shí),則經(jīng)123象限。

         、墚(dāng)K〉0時(shí),Y的值隨X值的增大而增大,當(dāng)X〈0時(shí),Y的值隨X值的增大而減少。

          二空間與圖形

          A、圖形的認(rèn)識

          1、點(diǎn),線,面

          點(diǎn),線,面:①圖形是由點(diǎn),線,面構(gòu)成的。

         、诿媾c面相交得線,線與線相交得點(diǎn)。

         、埸c(diǎn)動(dòng)成線,線動(dòng)成面,面動(dòng)成體。

          展開與折疊:①在棱柱中,任何相鄰的兩個(gè)面的交線叫做棱,側(cè)棱是相鄰兩個(gè)側(cè)面的交線,棱柱的所有側(cè)棱長相等,棱柱的上下底面的形狀相同,側(cè)面的形狀都是長方體。

         、贜棱柱就是底面圖形有N條邊的棱柱,上下底面就是N邊形。

          截一個(gè)幾何體:用一個(gè)平面去截一個(gè)圖形,截出的面叫做截面。

          視圖:主視圖,左視圖,俯視圖。

          多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。

          弧、扇形:①由一條弧和經(jīng)過這條弧的端點(diǎn)的兩條半徑所組成的圖形叫扇形。

         、趫A可以分割成若干個(gè)扇形。

          2、角

          線:①線段有兩個(gè)端點(diǎn)。

         、趯⒕段向一個(gè)方向無限延長就形成了射線。射線只有一個(gè)端點(diǎn)。

          ③將線段的兩端無限延長就形成了直線。直線沒有端點(diǎn)。

          ④經(jīng)過兩點(diǎn)有且只有一條直線。

          比較長短:①兩點(diǎn)之間的所有連線中,線段最短。兩點(diǎn)之間直線最短。

         、趦牲c(diǎn)之間線段的長度,叫做這兩點(diǎn)之間的距離。

          角的度量與表示:①角由兩條具有公共端點(diǎn)的射線組成,兩條射線的公共端點(diǎn)是這個(gè)角的頂點(diǎn)。

         、谝欢鹊1/60是一分,一分的1/60是一秒。即:60分為1度,60秒為1分。

          角的比較:①角也可以看成是由一條射線繞著他的端點(diǎn)旋轉(zhuǎn)而成的。

         、谝粭l射線繞著他的端點(diǎn)旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時(shí),所成的角叫做平角,180。始邊繼續(xù)旋轉(zhuǎn),當(dāng)他又和始邊重合時(shí),所成的角叫做周角,360。

          ③從一個(gè)角的頂點(diǎn)引出的一條射線,把這個(gè)角分成兩個(gè)相等的角,這條射線叫做這個(gè)角的平分線。

          平行:①同一平面內(nèi),不相交的兩條直線叫做平行線。

         、诮(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行。

         、廴绻麅蓷l直線都與第3條直線平行,那么這兩條直線互相平行。

          垂直:①如果兩條直線相交成直角,那么這兩條直線互相垂直。

         、诨ハ啻怪钡膬蓷l直線的交點(diǎn)叫做垂足。

         、燮矫鎯(nèi),過一點(diǎn)有且只有一條直線與已知直線垂直。

          垂直平分線:垂直和平分一條線段的直線叫垂直平分線。

          垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據(jù)射線和直線可以無限延長有關(guān),再看后面的,垂直平分線是一條直線,所以在畫垂直平分線的時(shí)候,確定了2點(diǎn)后(關(guān)于畫法,后面會(huì)講)一定要把線段穿出2點(diǎn)。

          垂直平分線定理:

          性質(zhì)定理:在垂直平分線上的點(diǎn)到該線段兩端點(diǎn)的距離相等;

          判定定理:到線段2端點(diǎn)距離相等的點(diǎn)在這線段的垂直平分線上;

          角平分線:把一個(gè)角平分的射線叫該角的角平分線。

          定義中有幾個(gè)要點(diǎn)要注意一下的:角的角平分線是一條射線,不是線段也不是直線,很多時(shí),在題目中會(huì)出現(xiàn)直線,這是角平分線的對稱軸才會(huì)用直線的,這也涉及到軌跡的問題,一個(gè)角的角平分線就是到角兩邊距離相等的點(diǎn)的集合。

          性質(zhì)定理:角平分線上的點(diǎn)到該角兩邊的距離相等;

          判定定理:到角的兩邊距離相等的點(diǎn)在該角的角平分線上;

          正方形:一組鄰邊相等的矩形是正方形

          性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì)

          判定:1、對角線相等的菱形2、鄰邊相等的矩形

          二、基本定理

          1、過兩點(diǎn)有且只有一條直線

          2、兩點(diǎn)之間線段最短

          3、同角或等角的補(bǔ)角相等

          ——補(bǔ)角=180-角度。

          4、同角或等角的余角相等——余角=90-角度。

          5、過一點(diǎn)有且只有一條直線和已知直線垂直

          6、直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短

          7、平行公理:經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行

          8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行

          9、同位角相等,兩直線平行

          10、內(nèi)錯(cuò)角相等,兩直線平行

          11、同旁內(nèi)角互補(bǔ),兩直線平行

          12、兩直線平行,同位角相等

          13、兩直線平行,內(nèi)錯(cuò)角相等

          14、兩直線平行,同旁內(nèi)角互補(bǔ)

          15、定理

          三角形兩邊的和大于第三邊

          16、推論

          三角形兩邊的差小于第三邊

          17、三角形內(nèi)角和定理:

          三角形三個(gè)內(nèi)角的和等于180°

          18、推論1

          直角三角形的兩個(gè)銳角互余

          19、推論2

          三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和

          20、推論3

          三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角

          21、全等三角形的對應(yīng)邊、對應(yīng)角相等

          22、邊角邊公理(SAS):有兩邊和它們的夾角對應(yīng)相等的兩個(gè)三角形全等

          23、角邊角公理(

          ASA):有兩角和它們的夾邊對應(yīng)相等的

          兩個(gè)三角形全等

          24、推論(AAS):有兩角和其中一角的對邊對應(yīng)相等的兩個(gè)三角形全等

          25、邊邊邊公理(SSS):有三邊對應(yīng)相等的兩個(gè)三角形全等

          26、斜邊、直角邊公理(HL):有斜邊和一條直角邊對應(yīng)相等的兩個(gè)直角三角形全等

          27、定理1

          在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等

          28、定理2

          到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上

          29、角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合

          30、推論1

          等腰三角形頂角的平分線平分底邊并且垂直于底邊

          31、推論2等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合,即三線合一;

          32、推論3

          等邊三角形的各角都相等,并且每一個(gè)角都等于60°

          33、等腰三角形的判定定理

          如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等(等角對等邊)

          34、等腰三角形的性質(zhì)定理

          等腰三角形的兩個(gè)底角相等

          (即等邊對等角)

          35、推論1

          三個(gè)角都相等的三角形是等邊三角形

          36、推論

          有一個(gè)角等于60°的等腰三角形是等邊三角形

          37、在直角三角形中,如果一個(gè)銳角等于30°那么它所對的直角邊等于斜邊的一半

          38、直角三角形斜邊上的中線等于斜邊上的一半

          39、定理

          線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等

          40、逆定理

          和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上

          41、線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合

          42、定理1

          關(guān)于某條直線對稱的兩個(gè)圖形是全等形

          43、定理

          如果兩個(gè)圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點(diǎn)連線的垂直平分線

          44、定理3

          兩個(gè)圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點(diǎn)在對稱軸上

          45、逆定理

          如果兩個(gè)圖形的對應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對稱

          46、勾股定理

          直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2

          47、勾股定理的逆定理

          如果三角形的三邊長a、b、c有關(guān)系a2+b2=c2,那么這個(gè)三角形是直角三角形

          48、定理

          四邊形的內(nèi)角和等于360°

          49、四邊形的外角和等于360°

          50、多邊形內(nèi)角和定理

          n邊形的內(nèi)角的和等于(n-2)×180°

          51、推論

          任意多邊的外角和等于360°

          52、平行四邊形性質(zhì)定理1

          平行四邊形的對角相等

          53、平行四邊形性質(zhì)定理2

          平行四邊形的對邊相等

          54、推論

          夾在兩條平行線間的平行線段相等

          55、平行四邊形性質(zhì)定理3

          平行四邊形的對角線互相平分

          56、平行四邊形判定定理1

          兩組對角分別相等的四邊形是平行四邊形

          57、平行四邊形判定定理2

          兩組對邊分別相等的四邊

          形是平行四邊形

          58、平行四邊形判定定理3

          對角線互相平分的四邊形是平行四邊形

          59、平行四邊形判定定理4

          一組對邊平行相等的四邊形是平行四邊形

          60、矩形性質(zhì)定理1

          矩形的四個(gè)角都是直角

          61、矩形性質(zhì)定理2

          矩形的對角線相等

          62、矩形判定定理1

          有三個(gè)角是直角的四邊形是矩形

          63、矩形判定定理2

          對角線相等的平行四邊形是矩形

          64、菱形性質(zhì)定理1

          菱形的四條邊都相等

          65、菱形性質(zhì)定理2

          菱形的對角線互相垂直,并且每一條對角線平分一組對角

          66、菱形面積=對角線乘積的一半,即S=(a×b)÷2

          67、菱形判定定理1

          四邊都相等的四邊形是菱形

          68、菱形判定定理2

          對角線互相垂直的平行四邊形是菱形

          69、正方形性質(zhì)定理1

          正方形的四個(gè)角都是直角,四條邊都相等

          70、正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角

          71、定理1

          關(guān)于中心對稱的兩個(gè)圖形是全等的

          72、定理2

          關(guān)于中心對稱的兩個(gè)圖形,對稱點(diǎn)連線都經(jīng)過對稱中心,并且被對稱中心平分

          73、逆定理

          如果兩個(gè)圖形的對應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對稱

          74、等腰梯形性質(zhì)定理

          等腰梯形在同一底上的兩個(gè)角相等

          75、等腰梯形的兩條對角線相等

          76、等腰梯形判定定理

          在同一底上的兩個(gè)角相等的梯

          形是等腰梯形

          77、對角線相等的梯形是等腰梯形

          78、平行線等分線段定理

          如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

          79、推論1

          經(jīng)過梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰

          80、推論2

          經(jīng)過三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊

          81、三角形中位線定理

          三角形的中位線平行于第三邊,并且等于它的一半

          82、梯形中位線定理

          梯形的中位線平行于兩底,并且等于兩底和的一半

          L=(a+b)÷2

          S=L×h

          83、(1)比例的基本性質(zhì):如果a:b=c:d,那么ad=bc

          如果

          ad=bc,那么a:b=c:d

          84、(2)合比性質(zhì):如果a/b=c/d,那么(a±b)/b=(c±d)/d

          85、(3)等比性質(zhì):如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

          86、平行線分線段成比例定理

          三條平行線截兩條直線,所得的對應(yīng)線段成比例

          87、推論

          平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例

          88、定理

          如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊

          89、平行于三角形的一邊,并且和其他兩邊相交的直線,

          所截得的三角形的三邊與原三角形三邊對應(yīng)成比例

          90、定理

          平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似

          91、相似三角形判定定理1

          兩角對應(yīng)相等,兩三角形相似(ASA)

          92、直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似

          93、判定定理2

          兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS)

          94、判定定理3

          三邊對應(yīng)成比例,兩三角形相似(SSS)

          95、定理

          如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個(gè)直角三角形相似(HL)

          96、性質(zhì)定理1

          相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比

          97、性質(zhì)定理2

          相似三角形周長的比等于相似比

          98、性質(zhì)定理3

          相似三角形面積的比等于相似比的平方

          99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)

          (a<90)

          100、任意銳角的正切值等于它的.余角的余切值,任意銳角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)

          101、圓是定點(diǎn)的距離等于定長的點(diǎn)的集合

          102、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合

          103、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

          104、同圓或等圓的半徑相等

          105、到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半徑的圓

          106、和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線

          107、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線

          108、到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線

          109、定理

          不在同一直線上的三點(diǎn)確定一個(gè)圓。

          110、垂徑定理

          垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

          111、推論1

         、倨椒窒遥ú皇侵睆剑┑闹睆酱怪庇谙,并且平分弦所對的兩條弧

          ②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧(直徑)

         、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

          112、推論2

          圓的兩條平行弦所夾的弧相等

          113、圓是以圓心為對稱中心的中心對稱圖形

          114、定理

          在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

          115、推論

          在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等

          116、定理

          一條弧所對的圓周角等于它所對的圓心角的一半

          117、推論1

          同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

          118、推論2

          半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

          119、推論3

          如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形

          120、定理

          圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對角

          121、①直線L和⊙O相交

          0<=d<r

          ②直線L和⊙O相切

          d=r

         、壑本L和⊙O相離

          d>r

          122、切線的判定定理

          經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

          123、切線的性質(zhì)定理

          圓的切線垂直于經(jīng)過切點(diǎn)的半徑

          124、推論1

          經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)

          125、推論2

          經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心

          126、切線長定理

          從圓外一點(diǎn)引圓的兩條切線相交與一點(diǎn),它們的切線長相等

          ,圓心和這一點(diǎn)的連線平分兩條切線的夾角

          127、圓的外切四邊形的兩組對邊的和相等

          128、弦切角定理

          弦切角等于它所夾的弧對的圓周角?

          129、推論

          如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等

          130、相交弦定理

          圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長的積相等

          131、推論

          如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)

          132、切割線定理

          從圓外一點(diǎn)引圓的切線和割線,切線長是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長的比例中項(xiàng)?

          133、推論

          從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條

          割線與圓的交點(diǎn)的兩條線段長的積相等

          134、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上

          135、①兩圓外離

          d>R+r

         、趦蓤A外切

          d=R+r

          ③兩圓相交

          R-r<d<R+r(R>r)

         、軆蓤A內(nèi)切

          d=R-r(R>r)

         、輧蓤A內(nèi)含

          d<R-r(R>r)

          136、定理

          相交兩圓的連心線垂直平分兩圓的公共弦

          137、定理

          把圓平均分成n(n≥3):

          ⑴依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形

         、平(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形

          138、定理

          任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓

          139、正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n

          140、定理

          正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形

          141、正n邊形的面積Sn=pn*rn/2

          p表示正n邊形的周長

          142、正三角形面積√3a^2/4

          a表示邊長

          143、如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

          144、弧長計(jì)算公式:L=n兀R/180——》L=nR

          145、扇形面積公式:S扇形=n兀R^2/360=LR/2

          146、內(nèi)公切線長=d-(R-r)

          外公切線長=d-(R+r)

        初中數(shù)學(xué)的知識點(diǎn)總結(jié)4

          1、圓是定點(diǎn)的距離等于定長的點(diǎn)的集合

          2、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合

          3、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

          4、同圓或等圓的半徑相等

          5、到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半徑的圓

          6、和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線7、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線

          8、到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線

          9、定理不在同一直線上的三點(diǎn)確定一個(gè)圓。

          10、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

          11、推論1:①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

          12、推論2:圓的兩條平行弦所夾的弧相等

          13、圓是以圓心為對稱中心的中心對稱圖形

          14、定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

          15、推論:在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等

          16、定理:一條弧所對的圓周角等于它所對的圓心角的一半

          17、推論:1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

          18、推論:2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的.弦是直徑

          19、推論:3如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形

          20、定理:圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對角

          21、①直線L和⊙O相交dr②直線L和⊙O相切d=r③直線L和⊙O相離dr

          22、切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線23、切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點(diǎn)的半徑24、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)25、推論2經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心

          26、切線長定理:從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等圓心和這一點(diǎn)的連線平分兩條切線的夾角

          27、圓的外切四邊形的兩組對邊的和相等

          28、弦切角定理:弦切角等于它所夾的弧對的圓周角

          29、推論:如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等30、相交弦定理:圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長的積相等31、推論:如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)

          32、切割線定理:從圓外一點(diǎn)引圓的切線和割線,切線長是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長的比例中項(xiàng)

          33、推論:從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長的積相等

          34、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上

          35、①兩圓外離dR+r②兩圓外切d=R+r③兩圓相交R—rdR+r(Rr)④兩圓內(nèi)切d=R—r(Rr)⑤兩圓內(nèi)含dR—r(Rr)

          36、定理:相交兩圓的連心線垂直平分兩圓的公共弦

          37、定理:把圓分成n(n≥3):⑴依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形⑵經(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形

          38、定理:任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓

          39、正n邊形的每個(gè)內(nèi)角都等于(n—2)×180°/n40、定理:正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形

          41、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長42、正三角形面積√3a/4a表示邊長

          43、如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k(n—2)180°/n=360°化為(n—2)(k—2)=444、弧長計(jì)算公式:L=n兀R/180

          45、扇形面積公式:S扇形=n兀R^2/360=LR/246、內(nèi)公切線長=d—(R—r)外公切線長=d—(R+r)

        初中數(shù)學(xué)的知識點(diǎn)總結(jié)5

          動(dòng)點(diǎn)與函數(shù)圖象問題常見的四種類型:

           1、三角形中的動(dòng)點(diǎn)問題:動(dòng)點(diǎn)沿三角形的邊運(yùn)動(dòng),根據(jù)問題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.

          2、四邊形中的動(dòng)點(diǎn)問題:動(dòng)點(diǎn)沿四邊形的邊運(yùn)動(dòng),根據(jù)問題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.

          3、圓中的動(dòng)點(diǎn)問題:動(dòng)點(diǎn)沿圓周運(yùn)動(dòng),根據(jù)問題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.

          4、直線、雙曲線、拋物線中的動(dòng)點(diǎn)問題:動(dòng)點(diǎn)沿直線、雙曲線、拋物線運(yùn)動(dòng),根據(jù)問題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.

          圖形運(yùn)動(dòng)與函數(shù)圖象問題常見的三種類型:

          1、線段與多邊形的運(yùn)動(dòng)圖形問題:把一條線段沿一定方向運(yùn)動(dòng)經(jīng)過三角形或四邊形,根據(jù)問題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數(shù)圖象.

          2、多邊形與多邊形的運(yùn)動(dòng)圖形問題:把一個(gè)三角形或四邊形沿一定方向運(yùn)動(dòng)經(jīng)過另一個(gè)多邊形,根據(jù)問題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數(shù)圖象.

          3、多邊形與圓的運(yùn)動(dòng)圖形問題:把一個(gè)圓沿一定方向運(yùn)動(dòng)經(jīng)過一個(gè)三角形或四邊形,或把一個(gè)三角形或四邊形沿一定方向運(yùn)動(dòng)經(jīng)過一個(gè)圓,根據(jù)問題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數(shù)圖象.

          動(dòng)點(diǎn)問題常見的四種類型:

          1、三角形中的動(dòng)點(diǎn)問題:動(dòng)點(diǎn)沿三角形的邊運(yùn)動(dòng),通過全等或相似,探究構(gòu)成的新圖形與原圖形的邊或角的'關(guān)系.

          2、四邊形中的動(dòng)點(diǎn)問題:動(dòng)點(diǎn)沿四邊形的邊運(yùn)動(dòng),通過探究構(gòu)成的新圖形與原圖形的全等或相似,得出它們的邊或角的關(guān)系.

          3、圓中的動(dòng)點(diǎn)問題:動(dòng)點(diǎn)沿圓周運(yùn)動(dòng),探究構(gòu)成的新圖形的邊角等關(guān)系.

          4、直線、雙曲線、拋物線中的動(dòng)點(diǎn)問題:動(dòng)點(diǎn)沿直線、雙曲線、拋物線運(yùn)動(dòng),探究是否存在動(dòng)點(diǎn)構(gòu)成的三角形是等腰三角形或與已知圖形相似等問題.

          總結(jié)反思:

           本題是二次函數(shù)的綜合題,考查了待定系數(shù)法求二次函數(shù)的解析式,一次函數(shù)的解析式,三角形全等的判定和性質(zhì),等腰直角三角形的性質(zhì),平行線的性質(zhì)等,數(shù)形結(jié)合思想的應(yīng)用是解題的關(guān)鍵.

          解答動(dòng)態(tài)性問題通常是對幾何圖形運(yùn)動(dòng)過程有一個(gè)完整、清晰的認(rèn)識,發(fā)掘“動(dòng)”與“靜”的內(nèi)在聯(lián)系,尋求變化規(guī)律,從變中求不變,從而達(dá)到解題目的.

          解答函數(shù)的圖象問題一般遵循的步驟:

           1、根據(jù)自變量的取值范圍對函數(shù)進(jìn)行分段.

          2、求出每段的解析式.

          3、由每段的解析式確定每段圖象的形狀.

          對于用圖象描述分段函數(shù)的實(shí)際問題,要抓住以下幾點(diǎn):

          1、自變量變化而函數(shù)值不變化的圖象用水平線段表示.

          2、自變量變化函數(shù)值也變化的增減變化情況.

          3、函數(shù)圖象的最低點(diǎn)和最高點(diǎn).

        初中數(shù)學(xué)的知識點(diǎn)總結(jié)6

          知識要點(diǎn):梯形的中位線平行于兩底,并且等于兩底和的一半。

          1.中位線概念

          (1)三角形中位線定義:連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線。

          (2)梯形中位線定義:連結(jié)梯形兩腰中點(diǎn)的線段叫做梯形的中位線。

          注意:

          (1)要把三角形的中位線與三角形的中線區(qū)分開。三角形中線是連結(jié)一頂點(diǎn)和它對邊的中點(diǎn),而三角形中位線是連結(jié)三角形兩邊中點(diǎn)的線段。

          (2)梯形的中位線是連結(jié)兩腰中點(diǎn)的線段而不是連結(jié)兩底中點(diǎn)的線段。

          (3)兩個(gè)中位線定義間的聯(lián)系:可以把三角形看成是上底為零時(shí)的梯形,這時(shí)梯形的中位線就變成三角形的中位線。

          2.中位線定理

          (1)三角形中位線定理:三角形的中位線平行于第三邊并且等于它的一半.

          三角形兩邊中點(diǎn)的連線(中位線)平行于第BC邊,且等于第三邊的一半。

          知識要領(lǐng)總結(jié):三角形的中位線所構(gòu)成的小三角形(中點(diǎn)三角形)面積是原三角形面積的四分之一。

          初中數(shù)學(xué)知識點(diǎn)總結(jié):平面直角坐標(biāo)系

          下面是對平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。

          平面直角坐標(biāo)系

          平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的`數(shù)軸,組成平面直角坐標(biāo)系。

          水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。

          平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合

          三個(gè)規(guī)定:

          ①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向

         、趩挝婚L度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。

          ③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

          相信上面對平面直角坐標(biāo)系知識的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。

          初中數(shù)學(xué)知識點(diǎn):平面直角坐標(biāo)系的構(gòu)成

          對于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來學(xué)習(xí)哦。

          平面直角坐標(biāo)系的構(gòu)成

          在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn)。

          通過上面對平面直角坐標(biāo)系的構(gòu)成知識的講解學(xué)習(xí),希望同學(xué)們對上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。

          初中數(shù)學(xué)知識點(diǎn):點(diǎn)的坐標(biāo)的性質(zhì)

          下面是對數(shù)學(xué)中點(diǎn)的坐標(biāo)的性質(zhì)知識學(xué)習(xí),同學(xué)們認(rèn)真看看哦。

          點(diǎn)的坐標(biāo)的性質(zhì)

          建立了平面直角坐標(biāo)系后,對于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過來,對于任何一個(gè)坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個(gè)點(diǎn)。

          對于平面內(nèi)任意一點(diǎn)C,過點(diǎn)C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應(yīng)點(diǎn)a,b分別叫做點(diǎn)C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(a,b)叫做點(diǎn)C的坐標(biāo)。

          一個(gè)點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。

          希望上面對點(diǎn)的坐標(biāo)的性質(zhì)知識講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會(huì)在考試中取得優(yōu)異成績的。

          初中數(shù)學(xué)知識點(diǎn):因式分解的一般步驟

          關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識講解。

          因式分解的一般步驟

          如果多項(xiàng)式有公因式就先提公因式,沒有公因式的多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的多項(xiàng)式,

          通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

          注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個(gè)范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個(gè)整式的積的形式。

          相信上面對因式分解的一般步驟知識的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會(huì)考出好成績。

          初中數(shù)學(xué)知識點(diǎn):因式分解

          下面是對數(shù)學(xué)中因式分解內(nèi)容的知識講解,希望同學(xué)們認(rèn)真學(xué)習(xí)。

          因式分解

          因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項(xiàng)式因式分解。

          因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④

          因式分解與整式乘法的關(guān)系:m(a+b+c)

          公因式:一個(gè)多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式。

          公因式確定方法:①系數(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個(gè)多項(xiàng)式各項(xiàng)的公因式。

          提取公因式步驟:

         、俅_定公因式。②確定商式③公因式與商式寫成積的形式。

          分解因式注意;

         、俨粶(zhǔn)丟字母

         、诓粶(zhǔn)丟常數(shù)項(xiàng)注意查項(xiàng)數(shù)

         、垭p重括號化成單括號

         、芙Y(jié)果按數(shù)單字母單項(xiàng)式多項(xiàng)式順序排列

         、菹嗤蚴綄懗蓛绲男问

         、奘醉(xiàng)負(fù)號放括號外

         、呃ㄌ杻(nèi)同類項(xiàng)合并。

          通過上面對因式分解內(nèi)容知識的講解學(xué)習(xí),相信同學(xué)們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學(xué)們的學(xué)習(xí)很好的幫助。

        初中數(shù)學(xué)的知識點(diǎn)總結(jié)7

          定義

          對應(yīng)角相等,對應(yīng)邊成比例的兩個(gè)三角形叫做相似三角形

          比值與比的概念

          比值是一個(gè)具體的數(shù)字如:AB/EF=2

          而比不是一個(gè)具體的數(shù)字如:AB/EF=2:1判定方法

          證兩個(gè)相似三角形應(yīng)該把表示對應(yīng)頂點(diǎn)的字母寫在對應(yīng)的位置上。如果是文字語言的“△ABC與△DEF相似”,那么就說明這兩個(gè)三角形的對應(yīng)頂點(diǎn)可能沒有寫在對應(yīng)的位置上,而如果是符號語言的“△ABC∽△DEF”,那么就說明這兩個(gè)三角形的對應(yīng)頂點(diǎn)寫在了對應(yīng)的位置上。

          方法一(預(yù)備定理)

          平行于三角形一邊的直線截其它兩邊所在的直線,截得的三角形與原三角形相似。(這是相似三角形判定的定理,是以下判定方法證明的基礎(chǔ)。這個(gè)引理的證明方法需要平行線與線段成比例的證明)

          方法二

          如果一個(gè)三角形的兩個(gè)角與另一個(gè)三角形的兩個(gè)角對應(yīng)相等,那么這兩個(gè)三角形相似。

          方法三

          如果兩個(gè)三角形的兩組對應(yīng)邊成比例,并且相應(yīng)的夾角相等,

          那么這兩個(gè)三角形相似

          方法四

          如果兩個(gè)三角形的三組對應(yīng)邊成比例,那么這兩個(gè)三角形相似

          方法五(定義)

          對應(yīng)角相等,對應(yīng)邊成比例的兩個(gè)三角形叫做相似三角形

          三個(gè)基本型

          Z型A型反A型

          方法六

          兩個(gè)直角三角形中,斜邊與直角邊對應(yīng)成比例,那么兩三角形相似。一定相似的三角形

          1、兩個(gè)全等的三角形

          (全等三角形是特殊的`相似三角形,相似比為1:1)

          2、兩個(gè)等腰三角形

          (兩個(gè)等腰三角形,如果其中的任意一個(gè)頂角或底角相等,那么這兩個(gè)等腰三角形相似。)

          3、兩個(gè)等邊三角形

          (兩個(gè)等邊三角形,三角都是60度,且邊邊相等,所以相似)

          4、直角三角形中由斜邊的高形成的三個(gè)三角形(母子三角形)

          圖形的學(xué)習(xí)需要大家對于知識的詳細(xì)了解和滲透,而不是一帶而過。

        初中數(shù)學(xué)的知識點(diǎn)總結(jié)8

          k0時(shí),y隨x的增大而減小,直線一定過二、四象限(3)若直線l1:yk1xb1l2:yk2xb2

          當(dāng)k1k2時(shí),l1//l2;當(dāng)b1b2b時(shí),l1與l2交于(0,b)點(diǎn)。

          (4)當(dāng)b>0時(shí)直線與y軸交于原點(diǎn)上方;當(dāng)b學(xué)大教育

          (1)是中心對稱圖形,對中稱心是原點(diǎn)(2)對稱性:是軸直線yx和yx(2)是軸對稱圖形,對稱k0時(shí)兩支曲線分別位于一、三象限且每一象限內(nèi)y隨x的增大而減。3)

          k0時(shí)兩支曲線分別位于二、四象限且每一象限內(nèi)y隨x的增大而增大(4)過圖象上任一點(diǎn)作x軸與y軸的垂線與坐標(biāo)軸構(gòu)成的矩形面積為|k|。

          P(1)應(yīng)用在u3.應(yīng)用(2)應(yīng)用在(3)其它F上SS上t其要點(diǎn)是會(huì)進(jìn)行“數(shù)結(jié)形合”來解決問題二、二次函數(shù)

          1.定義:應(yīng)注意的問題

          (1)在表達(dá)式y(tǒng)=ax2+bx+c中(a、b、c為常數(shù)且a≠0)(2)二次項(xiàng)指數(shù)一定為22.圖象:拋物線

          3.圖象的性質(zhì):分五種情況可用表格來說明表達(dá)式(1)y=ax2頂點(diǎn)坐標(biāo)對稱軸(0,0)最大(。┲祔最小=0y最大=0(2)y=ax2+c(0,0)y最小=0y最大=0(3)y=a(x-(h,0)h)2直線x=hy最小=0y最大=0y隨x的變化情況隨x增大而增大隨x增大而減小隨x的增大而增大隨x的增大而減小隨x的增大而增大隨x的增大而減小直線x=0(y軸)①若a>0,則x=0時(shí),若a>0,則x>0時(shí),y②若a0,則x=0時(shí),①若a>0,則x>0時(shí),y②若a0,則x=h時(shí),①若a>0,則x>h時(shí),y②若a學(xué)大教育

          表達(dá)式h)2+k頂點(diǎn)坐標(biāo)對稱軸直線x=h最大(。┲祔最小=ky最大=k(5)y=ax2+b(x+cb2ay隨x的變化情況隨x的增大而增大隨x的增大而減小b2a時(shí),①若a>0,則x>b2a(4)y=a(x-(h,k)①若a>0,則x=h時(shí),①若a>0,則x>h時(shí),y②若a0,則x=4acb24ay最小=4acb24ab時(shí),y隨x的增大而增大時(shí),②若a2a2a時(shí),y隨x的增大而減小b②若a學(xué)大教育

          一次函數(shù)圖象和性質(zhì)

          【知識梳理】

          1.正比例函數(shù)的一般形式是y=kx(k≠0),一次函數(shù)的一般形式是y=kx+b(k≠0).2.一次函數(shù)ykxb的圖象是經(jīng)過(3.一次函數(shù)ykxb的圖象與性質(zhì)

          圖像的大致位置經(jīng)過象限第象限第象限第象限第象限y隨x的增大y隨x的增大而y隨x的增大y隨x的增大性質(zhì)而而而而

          【思想方法】數(shù)形結(jié)合

          k、b的'符號k>0,b>0k>0,b<0k<0,b>0k<0,b<0b,0)和(0,b)兩點(diǎn)的一條直線.k反比例函數(shù)圖象和性質(zhì)

          【知識梳理】

          1.反比例函數(shù):一般地,如果兩個(gè)變量x、y之間的關(guān)系可以表示成y=或(k為常數(shù),k≠0)的形式,那么稱y是x的反比例函數(shù).2.反比例函數(shù)的圖象和性質(zhì)

          k的符號k>0yoxk<0yox

          圖像的大致位置經(jīng)過象限性質(zhì)

          第象限在每一象限內(nèi),y隨x的增大而第象限在每一象限內(nèi),y隨x的增大而3.k的幾何含義:反比例函數(shù)y=的幾何意義,即過雙曲線y=

          k(k≠0)中比例系數(shù)kxk(k≠0)上任意一點(diǎn)P作x4

          x軸、y軸垂線,設(shè)垂足分別為A、B,則所得矩形OAPB

          函數(shù)學(xué)習(xí)方法學(xué)大教育

          的面積為.

          【思想方法】數(shù)形結(jié)合

          二次函數(shù)圖象和性質(zhì)

          【知識梳理】

          1.二次函數(shù)ya(xh)2k的圖像和性質(zhì)

          圖象開口對稱軸頂點(diǎn)坐標(biāo)最值增減性

          在對稱軸左側(cè)在對稱軸右側(cè)當(dāng)x=時(shí),y有最值y隨x的增大而y隨x的增大而a>0yOa<0x當(dāng)x=時(shí),y有最值y隨x的增大而y隨x的增大而銳角三角函數(shù)

          【思想方法】

          1.常用解題方法設(shè)k法2.常用基本圖形雙直角

          【例題精講】例題1.在△ABC中,∠C=90°.(1)若cosA=

          14,則tanB=______;(2)若cosA=,則tanB=______.255

          函數(shù)學(xué)習(xí)方法學(xué)大教育

          例題2.(1)已知:cosα=

          23,則銳角α的取值范圍是()A.0°

        初中數(shù)學(xué)的知識點(diǎn)總結(jié)9

          1、菱形的定義:有一組鄰邊相等的平行四邊形叫做菱形。

          2、菱形的性質(zhì):⑴矩形具有平行四邊形的一切性質(zhì);

         、屏庑蔚乃臈l邊都相等;

          ⑶菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角。

         、攘庑问禽S對稱圖形。

          提示:利用菱形的性質(zhì)可證得線段相等、角相等,它的對角線互相垂直且把菱形分成四個(gè)全等的直角三角形,由此又可與勾股定理聯(lián)系,可得對角線與邊之間的關(guān)系,即邊長的平方等于對角線一半的平方和。

          3、因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項(xiàng)式因式分解。

          4、因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④因式分解與整式乘法的關(guān)系:m(a+b+c)

          5、公因式:一個(gè)多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式。

          6、公因式確定方法:①系數(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個(gè)多項(xiàng)式各項(xiàng)的公因式。

          7、提取公因式步驟:①確定公因式。②確定商式③公因式與商式寫成積的形式。

          8、平方根表示法:一個(gè)非負(fù)數(shù)a的平方根記作,讀作正負(fù)根號a。a叫被開方數(shù)。

          9、中被開方數(shù)的取值范圍:被開方數(shù)a≥0

          10、平方根性質(zhì):①一個(gè)正數(shù)的平方根有兩個(gè),它們互為相反數(shù)。②0的平方根是它本身0。③負(fù)數(shù)沒有平方根開平方;求一個(gè)數(shù)的平方根的`運(yùn)算,叫做開平方。

          11、平方根與算術(shù)平方根區(qū)別:定義不同、表示方法不同、個(gè)數(shù)不同、取值范圍不同。

          12、聯(lián)系:二者之間存在著從屬關(guān)系;存在條件相同;0的算術(shù)平方根與平方根都是0

          13、含根號式子的意義:表示a的平方根,表示a的算術(shù)平方根,表示a的負(fù)的平方根。

          14、求正數(shù)a的算術(shù)平方根的方法;

          完全平方數(shù)類型:①想誰的平方是數(shù)a。②所以a的平方根是多少。③用式子表示。

          求正數(shù)a的算術(shù)平方根,只需找出平方后等于a的正數(shù)。

        初中數(shù)學(xué)的知識點(diǎn)總結(jié)10

          其實(shí)角的大小與邊的長短沒有關(guān)系,角的大小決定于角的兩條邊張開的程度。

          角的靜態(tài)定義

          具有公共端點(diǎn)的兩條射線組成的圖形叫做角(angle)。這個(gè)公共端點(diǎn)叫做角的頂點(diǎn),這兩條射線叫做角的兩條邊。

          角的動(dòng)態(tài)定義

          一條射線繞著它的端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形叫做角。所旋轉(zhuǎn)射線的端點(diǎn)叫做角的頂點(diǎn),開始位置的射線叫做角的始邊,終止位置的`射線叫做角的終邊

          角的符號

          角的符號:∠

          角的種類

          在動(dòng)態(tài)定義中,取決于旋轉(zhuǎn)的方向與角度。角可以分為銳角、直角、鈍角、平角、周角、負(fù)角、正角、優(yōu)角、劣角、0角這10種。以度、分、秒為單位的角的度量制稱為角度制。此外,還有密位制、弧度制等。

          銳角:大于0°,小于90°的角叫做銳角。

          直角:等于90°的角叫做直角。

          鈍角:大于90°而小于180°的角叫做鈍角。

          平角:等于180°的角叫做平角。

          優(yōu)角:大于180°小于360°叫優(yōu)角。

          劣角:大于0°小于180°叫做劣角,銳角、直角、鈍角都是劣角。

          角周角:等于360°的角叫做周角。

          負(fù)角:按照順時(shí)針方向旋轉(zhuǎn)而成的角叫做負(fù)角。

          正角:逆時(shí)針旋轉(zhuǎn)的角為正角。

          0角:等于零度的角。

          特殊角

          余角和補(bǔ)角:兩角之和為90°則兩角互為余角,兩角之和為180°則兩角互為補(bǔ)角。等角的余角相等,等角的補(bǔ)角相等。

          對頂角:兩條直線相交后所得的只有一個(gè)公共頂點(diǎn)且兩個(gè)角的兩邊互為反向延長線,這樣的兩個(gè)角叫做互為對頂角。兩條直線相交,構(gòu)成兩對對頂角;閷斀堑膬蓚(gè)角相等。

          鄰補(bǔ)角:兩個(gè)角有一條公共邊,它們的另一條邊互為反向延長線,具有這種關(guān)系的兩個(gè)角,互為鄰補(bǔ)角。

          內(nèi)錯(cuò)角:互相平行的兩條直線直線,被第三條直線所截,如果兩個(gè)角都在兩條直線的

          內(nèi)側(cè),并且在第三條直線的兩側(cè),那么這樣的一對角叫做內(nèi)錯(cuò)角(alternate interior angle )。如:∠1和∠6,∠2和∠5

          同旁內(nèi)角:兩個(gè)角都在截線的同一側(cè),且在兩條被截線之間,具有這樣位置關(guān)系的一對角互為同旁內(nèi)角。如:∠1和∠5,∠2和∠6

          同位角:兩個(gè)角都在截線的同旁,又分別處在被截的兩條直線同側(cè),具有這樣位置關(guān)系的一對角叫做同位角(correspondingangles):∠1和∠8,∠2和∠7

          外錯(cuò)角:兩條直線被第三條直線所截,構(gòu)成了八個(gè)角。如果兩個(gè)角都在兩條被截線的外側(cè),并且在截線的兩側(cè),那么這樣的一對角叫做外錯(cuò)角。例如:∠4與∠7,∠3與∠8。

          同旁外角:兩個(gè)角都在截線的同一側(cè),且在兩條被截線之外,具有這樣位置關(guān)系的一對角互為同旁外角。如:∠4和∠8,∠3和∠7

          終邊相同的角:具有共同始邊和終邊的角叫終邊相同的角。與角a終邊相同的角屬于集合:

          A{bb=k_360+a,k∈Z}表示角度制;

          B{bb=2kπ+a,k∈Z}表示弧度制

        初中數(shù)學(xué)的知識點(diǎn)總結(jié)11

          初中數(shù)學(xué)基礎(chǔ)知識點(diǎn)

          平方根:①如果一個(gè)正數(shù)X的平方等于A,那么這個(gè)正數(shù)X就叫做A的算術(shù)平方根。②如果一個(gè)數(shù)X的平方等于A,那么這個(gè)數(shù)X就叫做A的平方根。③一個(gè)正數(shù)有2個(gè)平方根/0的平方根為0/負(fù)數(shù)沒有平方根。④求一個(gè)數(shù)A的平方根運(yùn)算,叫做開平方,其中A叫做被開方數(shù)。

          立方根:①如果一個(gè)數(shù)X的立方等于A,那么這個(gè)數(shù)X就叫做A的立方根。②正數(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。③求一個(gè)數(shù)A的立方根的運(yùn)算叫開立方,其中A叫做被開方數(shù)。

          實(shí)數(shù):①實(shí)數(shù)分有理數(shù)和無理數(shù)。②在實(shí)數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對值的意義完全一樣。③每一個(gè)實(shí)數(shù)都可以在數(shù)軸上的一個(gè)點(diǎn)來表示。

          初中數(shù)學(xué)平行四邊形的性質(zhì)知識點(diǎn)

          1.定義:兩組對邊分別平行的四邊形叫平行四邊形

          2.平行四邊形的性質(zhì)

          (1)平行四邊形的對邊平行且相等;

          (2)平行四邊形的鄰角互補(bǔ),對角相等;

          (3)平行四邊形的對角線互相平分;

          3.平行四邊形的判定

          平行四邊形是幾何中一個(gè)重要內(nèi)容,如何根據(jù)平行四邊形的性質(zhì),判定一個(gè)四邊形是平行四邊形是個(gè)重點(diǎn),下面就對平行四邊形的五種判定方法,進(jìn)行劃分:

          第一類:與四邊形的對邊有關(guān)

          (1)兩組對邊分別平行的'四邊形是平行四邊形;

          (2)兩組對邊分別相等的四邊形是平行四邊形;

          (3)一組對邊平行且相等的四邊形是平行四邊形;

          第二類:與四邊形的對角有關(guān)

          (4)兩組對角分別相等的四邊形是平行四邊形;

          第三類:與四邊形的對角線有關(guān)

          (5)對角線互相平分的四邊形是平行四邊形

          初中數(shù)學(xué)函數(shù)知識點(diǎn)總結(jié)

          1.一次函數(shù)

          (1)定義:形如y=kx+b(k、b是常數(shù),且k≠0)的函數(shù),叫做一次函數(shù)。特別地,當(dāng)b=0時(shí),y是x的正比例函數(shù)。即:y=kx(k為常數(shù),k≠0)

          所以,正比例函數(shù)是特殊的一次函數(shù)。

          (2)一次函數(shù)的圖像及性質(zhì):

          1在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b。

          2一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)。

          3正比例函數(shù)的圖像總是過原點(diǎn)。

          4k,b與函數(shù)圖像所在象限的關(guān)系:

          當(dāng)k>0時(shí),y隨x的增大而增大;當(dāng)k<0時(shí),y隨x的增大而減小。

          當(dāng)k>0,b>0時(shí),直線通過一、二、三象限;

          當(dāng)k>0,b<0時(shí),直線通過一、三、四象限;

          當(dāng)k<0,b>0時(shí),直線通過一、二、四象限;

          當(dāng)k<0,b<0時(shí),直線通過二、三、四象限;

          當(dāng)b=0時(shí),直線通過原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。

          這時(shí),當(dāng)k>0時(shí),直線只通過一、三象限;當(dāng)k<0時(shí),直線只通過二、四象限。

          2.二次函數(shù)

          (1)定義:一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c(a,b,c為常數(shù),a≠0,),稱y為x的二次函數(shù)。

          (2)二次函數(shù)的三種表達(dá)式

          一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0);

          頂點(diǎn)式:y=a(x-h)^2+k(拋物線的頂點(diǎn)P(h,k));

          交點(diǎn)式:

          (3)二次函數(shù)的圖像與性質(zhì)

          1二次函數(shù)的圖像是一條拋物線。

          2拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。

          特別地,當(dāng)b=0時(shí),拋物線的對稱軸是y軸(即直線x=0)。

          3二次項(xiàng)系數(shù)a決定拋物線的開口方向。

          當(dāng)a>0時(shí),拋物線向上開口;

          當(dāng)a<0時(shí),拋物線向下開口。

          4一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對稱軸的位置。

          當(dāng)a與b同號時(shí)(即ab>0),對稱軸在y軸左;

          當(dāng)a與b異號時(shí)(即ab<0),對稱軸在y軸右。

          5拋物線與x軸交點(diǎn)個(gè)數(shù)

          Δ=b^2-4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn);

          Δ=b^2-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn);

          Δ=b^2-4ac<0時(shí),拋物線與x軸沒有交點(diǎn)。

          3.反比例函數(shù)

          (1)定義:形如y=k/x(k為常數(shù)且k≠0) 的函數(shù),叫做反比例函數(shù)。

          (2)反比例函數(shù)圖像性質(zhì):

          1反比例函數(shù)的圖像為雙曲線;

          當(dāng)K>0時(shí),反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù);

          當(dāng)K<0時(shí),反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù);

          反比例函數(shù)圖像只能無限趨向于坐標(biāo)軸,無法和坐標(biāo)軸相交。

          2由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關(guān)于原點(diǎn)對稱。

        初中數(shù)學(xué)的知識點(diǎn)總結(jié)12

          1.一元一次方程:只含有一個(gè)未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項(xiàng)的系數(shù)不是零的整式方程是一元一次方程。

          2.一元一次方程的標(biāo)準(zhǔn)形式:ax+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0)。

          3.一元一次方程解法的一般步驟:整理方程……去分母……去括號……移項(xiàng)……合并同類項(xiàng)……系數(shù)化為1 ……(檢驗(yàn)方程的解)。

          4.列一元一次方程解應(yīng)用題:

         。1)讀題分析法:多用于“和,差,倍,分問題”

          仔細(xì)讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套—————”,利用這些關(guān)鍵字列出文字等式,并且據(jù)題意設(shè)出未知數(shù),最后利用題目中的量與量的關(guān)系填入代數(shù)式,得到方程。

          (2)畫圖分析法:多用于“行程問題”

          利用圖形分析數(shù)學(xué)問題是數(shù)形結(jié)合思想在數(shù)學(xué)中的體現(xiàn),仔細(xì)讀題,依照題意畫出有關(guān)圖形,使圖形各部分具有特定的含義,通過圖形找相等關(guān)系是解決問題的關(guān)鍵,從而取得布列方程的依據(jù),最后利用量與量之間的'關(guān)系(可把未知數(shù)看做已知量),填入有關(guān)的代數(shù)式是獲得方程的基礎(chǔ)。

          11.列方程解應(yīng)用題的常用公式:

         。1)行程問題:距離=速度·時(shí)間;

         。2)工程問題:工作量=工效·工時(shí);

         。3)比率問題:部分=全體·比率;

          (4)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度—水流速度;

         。5)商品價(jià)格問題:售價(jià)=定價(jià)·折·,利潤=售價(jià)—成本,;

          (6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab,C正方形=4a,

          S正方形=a2,S環(huán)形=π(R2—r2),V長方體=abc,V正方體=a3,V圓柱=πR2h,V圓錐= πR2h。

          本章內(nèi)容是代數(shù)學(xué)的核心,也是所有代數(shù)方程的基礎(chǔ)。豐富多彩的問題情境和解決問題的快樂很容易激起學(xué)生對數(shù)學(xué)的樂趣,所以要注意引導(dǎo)學(xué)生從身邊的問題研究起,進(jìn)行有效的數(shù)學(xué)活動(dòng)和合作交流,讓學(xué)生在主動(dòng)學(xué)習(xí)、探究學(xué)習(xí)的過程中獲得知識,提升能力,體會(huì)數(shù)學(xué)思想方法。

        初中數(shù)學(xué)的知識點(diǎn)總結(jié)13

          1、乘法與因式分解

          a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b)(a2+ab+b2)

          2、三角不等式

          |a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b

          |a-b|≥|a|-|b|-|a|≤a≤|a|

          3、一元二次方程的解

          -b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a

          4、根與系數(shù)的關(guān)系

          X1+X2=-b/a X1*X2=c/a注:韋達(dá)定理

          5、判別式

         、賐2-4a=0注:方程有相等的兩實(shí)根

         、赽2-4ac>0注:方程有一個(gè)實(shí)根

         、踒2-4ac<0注:方程有共軛復(fù)數(shù)根

          6、三角函數(shù)公式

         、賰山呛凸

          sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

          cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

          tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)

          ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

         、诒督枪

          tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga

          cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

         、郯虢枪

          sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)

          cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)

          tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))

          ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))

          ④和差化積

          2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)

          2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)

          sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

          tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

          ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB

         、菽承⿺(shù)列前n項(xiàng)和

          1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2

          1+3+5+7+9+11+13+15+…+(2n-1)=n2

          2+4+6+8+10+12+14+…+(2n)=n(n+1)

          12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

          13+23+33+43+53+63+…n3=n2(n+1)2/4

          1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

          ⑥正弦定理

          a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圓半徑

         、哂嘞叶ɡ

          b2=a2+c2-2accosB注:角B是邊a和邊c的夾角

         、鄨A的方程

          圓的標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2注:(a,b)是圓心坐標(biāo)

          圓的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0

         、崃Ⅲw體積與側(cè)面積

          直棱柱側(cè)面積S=c*h斜棱柱側(cè)面積S=c'*h

          正棱錐側(cè)面積S=1/2c*h'正棱臺側(cè)面積S=1/2(c+c')h'

          圓臺側(cè)面積S=1/2(c+c')l=pi(R+r)l球的表面積S=4pi*r2

          圓柱側(cè)面積S=c*h=2pi*h圓錐側(cè)面積S=1/2*c*l=pi*r*l

          弧長公式l=a*r a是圓心角的弧度數(shù)r>0扇形面積公式s=1/2*l*r

          錐體體積公式V=1/3*S*H圓錐體體積公式V=1/3*pi*r2h

          斜棱柱體積V=S'L注:其中,S'是直截面面積,L是側(cè)棱長

          柱體體積公式V=s*h圓柱體V=pi*r2h

          二、初中幾何公式

          1、平行線證明

         、俳(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行

          ②如果兩條直線都和第三條直線平行,這兩條直線也互相平行

         、弁唤窍嗟龋瑑芍本平行

         、軆(nèi)錯(cuò)角相等,兩直線平行

          ⑤同旁內(nèi)角互補(bǔ),兩直線平行

         、迌芍本平行,同位角相等

          ⑦兩直線平行,內(nèi)錯(cuò)角相等

          ⑧兩直線平行,同旁內(nèi)角互補(bǔ)

          2、全等三角形證明

         、龠吔沁吂(SAS)有兩邊和它們的夾角對應(yīng)相等的兩個(gè)三角形全等

          ②角邊角公理(ASA)有兩角和它們的夾邊對應(yīng)相等的兩個(gè)三角形全等

         、弁普(AAS)有兩角和其中一角的對邊對應(yīng)相等的兩個(gè)三角形全等

         、苓呥呥吂(SSS)有三邊對應(yīng)相等的兩個(gè)三角形全等

         、菪边、直角邊公理(HL)有斜邊和一條直角邊對應(yīng)相等的兩個(gè)直角三角形全等

          3、三角形基本定理

         、俣ɡ1在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等

         、诙ɡ2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上

         、劢堑钠椒志是到角的兩邊距離相等的所有點(diǎn)的集合

          ④等腰三角形的性質(zhì)定理等腰三角形的兩個(gè)底角相等(即等邊對等角)

         、萃普1等腰三角形頂角的平分線平分底邊并且垂直于底邊

          ⑥等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合

          ⑦推論3等邊三角形的各角都相等,并且每一個(gè)角都等于60°

          ⑧等腰三角形的判定定理如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等(等角對等邊)

         、嶂苯侨切

          4、多邊形定理

         、俣ɡ硭倪呅蔚膬(nèi)角和等于360°

          ②四邊形的外角和等于360°

         、鄱噙呅蝺(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°

          ④推論任意多邊的`外角和等于360°

          5、平行四邊形證明與等腰梯形證明

         、倨叫兴倪呅涡再|(zhì)定理1平行四邊形的對角相等

          ②平行四邊形性質(zhì)定理2平行四邊形的對邊相等

         、燮叫兴倪呅涡再|(zhì)定理3平行四邊形的對角線互相平分

          ……

         、芫匦涡再|(zhì)定理1矩形的四個(gè)角都是直角

         、菥匦涡再|(zhì)定理2矩形的對角線相等

          ……

         、薜妊菪涡再|(zhì)定理等腰梯形在同一底上的兩個(gè)角相等

         、叩妊菪闻卸ǘɡ碓谕坏咨系膬蓚(gè)角相等的梯形是等腰梯形

         、嗤普1經(jīng)過梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰

          ⑨推論2經(jīng)過三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊

          7、相似三角形證明

         、傧嗨迫切闻卸ǘɡ1兩角對應(yīng)相等,兩三角形相似(ASA)

         、谂卸ǘɡ2兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS)

         、叟卸ǘɡ3三邊對應(yīng)成比例,兩三角形相似(SSS)

         、芏ɡ砣绻粋(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個(gè)直角三角形相似

         、菪再|(zhì)定理1相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比

         、扌再|(zhì)定理2相似三角形周長的比等于相似比

          ⑦性質(zhì)定理3相似三角形面積的比等于相似比的平方

          8、弦和圓的證明

         、俣ɡ聿辉谕恢本上的三點(diǎn)確定一個(gè)圓。

         、诖箯蕉ɡ泶怪庇谙业闹睆狡椒诌@條弦并且平分弦所對的兩條弧

         、弁普1

          平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

          弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧

          平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

         、芡普2圓的兩條平行弦所夾的弧相等

         、輬A是以圓心為對稱中心的中心對稱圖形

          ⑥定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦

          相等,所對的弦的弦心距相等

         、呔與圓的位置關(guān)系

          直線L和⊙O相交d

          直線L和⊙O相切d=r

          直線L和⊙O相離d>r

          ⑧圓與圓之間的位置關(guān)系

          兩圓外離d>R+r②兩圓外切d=R+r

          兩圓相交R-r

          兩圓內(nèi)切d=R-r(R>r)

          兩圓內(nèi)含dr)

          QQ截圖20150129173906.jpg

          三、數(shù)學(xué)學(xué)習(xí)方法

          1、突出一個(gè)“勤”字(克服一個(gè)“惰”字)

          數(shù)學(xué)家華羅庚曾經(jīng)說過:“聰明在于學(xué)習(xí),天才在于勤奮”,“勤能補(bǔ)拙是良訓(xùn),一分辛勞一分才“:我們在學(xué)習(xí)的時(shí)候要突出一個(gè)勤字,克服一個(gè)“懶”字,怎么突出“勤”字,從這個(gè)字面上來看,要做到五勤:“耳勤”“眼勤”(耳朵聽,眼睛看,接受信息)

          “口勤”(討論,回答問題,而不是講話,消化信息)“腦勤”(善于思考問題,積極思考問題——吸收、儲存信息)那是不是做到以上四點(diǎn)就行了呢?不是。這個(gè)字還有缺陷,在聰下面加上“手”

          “手勤”(動(dòng)手多實(shí)踐,不僅光做題,做課件,做模型)

          這樣的人聰明不聰明?

          最大的提高學(xué)習(xí)效率,首先要做到——上課認(rèn)真聽講(這是根本)回家先復(fù)習(xí)再做題如果課聽不好,就別想消化知識

          2、學(xué)好初中數(shù)學(xué)還有兩個(gè)要點(diǎn),要狠抓兩個(gè)要點(diǎn):

          學(xué)好數(shù)學(xué),一要(動(dòng)手),二要(動(dòng)腦)。動(dòng)腦就是要學(xué)會(huì)觀察分析問題,學(xué)會(huì)思考,不要拿到題就做,找到已知和未知想象之間有什么聯(lián)系,多問幾個(gè)為什么。動(dòng)手就是多實(shí)踐,多做題,要“拳不離手”(武術(shù))“曲不離口”(唱歌)。同學(xué)就是“題不離手”,這兩個(gè)要點(diǎn)大家要記住!皠(dòng)腦又動(dòng)手,才能最大地發(fā)揮大腦的效率”

          3、做到“三個(gè)一遍”

          大家聽過“失敗是成功之母”聽過“重復(fù)是學(xué)習(xí)之母”嗎?培根(18-19世紀(jì)英國的哲學(xué)家)——“知識就是力量”,“重復(fù)是學(xué)習(xí)之母”。如何重復(fù),我給你們解釋一下:

          “上課要認(rèn)真聽一遍,動(dòng)手推一遍,想一遍”

          “下課看”

          “考試前”

          4、重視“四個(gè)依據(jù)”

          讀好一本教科書——它是教學(xué)、中考的主要依據(jù);

          記好一本筆記——它是教師多年經(jīng)驗(yàn)的結(jié)晶;

          做好做凈一本習(xí)題集——它是使知識拓寬;

          記好一本心得筆記,最好每人自己準(zhǔn)備一本錯(cuò)題集

        初中數(shù)學(xué)的知識點(diǎn)總結(jié)14

          課題

          3.5正比例函數(shù)、反比例函數(shù)、一次函數(shù)和二次函數(shù)

          教學(xué)目標(biāo)

          1、掌握正(反)比例函數(shù)、一次函數(shù)和二次函數(shù)的概念及其圖形和性質(zhì)2、會(huì)用待定系數(shù)法確定函數(shù)的解析式

          教學(xué)重點(diǎn)

          掌握正(反)比例函數(shù)、一次函數(shù)和二次函數(shù)的概念及其圖形和性質(zhì)

          教學(xué)難點(diǎn)

          掌握正(反)比例函數(shù)、一次函數(shù)和二次函數(shù)的概念及其圖形和性質(zhì)

          教學(xué)方法

          講練結(jié)合法

          教學(xué)過程

          (I)知識要點(diǎn)(見下表:)

          第三章第29頁函數(shù)名稱解析式圖像正比例函數(shù)ykx(k0)0x反比例函數(shù)一次函數(shù)ykxb(k0)0x二次函數(shù)yax2bxc(a0)y0xy0xky(k0)xyxy0xyy0xy0xyk0k0k0k0k0k0a0a0圖像過點(diǎn)(0,0)及(1,k)的直線雙曲線,x軸、y軸是它的`漸近線與直線ykx平行且過點(diǎn)(0,b)的直線拋物線定義域RxxR且xoyyR且yoRR4acb2a0時(shí),y,4aR值域R4acb2a0時(shí),y,4aba0時(shí),在-,上為增2a函數(shù),在,-單調(diào)性k0時(shí),在,0,k0時(shí)為增函數(shù)0,上為減函數(shù)k0時(shí),為增函數(shù)b上為減函數(shù)2ak0時(shí)為減函數(shù)k0時(shí),在,0,k0時(shí),為減函數(shù)0,上為增函數(shù)ba0時(shí),在-,上為減2a函數(shù),在,-b上為增函數(shù)2a奇偶性奇函數(shù)奇函數(shù)b=0時(shí)奇函數(shù)b=0時(shí)偶函數(shù)a0且x-ymin最值無無無b時(shí),2a24acb4ab時(shí),2a24acb4aa0且x-ymax

          第三章第30頁b24acb2注:二次函數(shù)yaxbxca(x(a0))a(xm)(xn)2a4abb4acb2對稱軸x,頂點(diǎn)(,)

          2a2a4a2拋物線與x軸交點(diǎn)坐標(biāo)(m,0),(n,0)(II)例題講解

          例1、求滿足下列條件的二次函數(shù)的解析式:(1)拋物線過點(diǎn)A(1,1),B(2,2),C(4,2)(2)拋物線的頂點(diǎn)為P(1,5)且過點(diǎn)Q(3,3)

         。3)拋物線對稱軸是x2,它在x軸上截出的線段AB長為2且拋物線過點(diǎn)(1,7)。2,

          解:(1)設(shè)yax2bxc(a0),將A、B、C三點(diǎn)坐標(biāo)分別代入,可得方程組為

          abc1a1解得b4yx24x24a2bc216a4bc2c2(2)設(shè)二次函數(shù)為ya(x1)25,將Q點(diǎn)坐標(biāo)代入,即a(31)253,得

          a2,故y2(x1)252x24x3

         。3)∵拋物線對稱軸為x2;

          ∴拋物線與x軸的兩個(gè)交點(diǎn)A、B應(yīng)關(guān)于x2對稱;∴由題設(shè)條件可得兩個(gè)交點(diǎn)坐標(biāo)分別為A(2∴可設(shè)函數(shù)解析式為:ya(x2代入方程可得a1

          ∴所求二次函數(shù)為yx24x2,

          2,0)、B(222,0)

          2)(x22)a(x2)22a,將(1,7)

          5),例2:二次函數(shù)的圖像過點(diǎn)(0,8),(1,(4,0)

         。1)求函數(shù)圖像的頂點(diǎn)坐標(biāo)、對稱軸、最值及單調(diào)區(qū)間(2)當(dāng)x取何值時(shí),①y≥0,②y(2)由y0可得x22x80,解得x4或x2由y0可得x22x80,解得2x4

          例3:求函數(shù)f(x)x2x1,x[1,1]的最值及相應(yīng)的x值

          113x1(x)2,知函數(shù)的圖像開口向上,對稱軸為x

          224111]上是增函數(shù)。∴依題設(shè)條件可得f(x)在[1,]上是減函數(shù),在[,22131]時(shí),函數(shù)取得最小值,且ymin∴當(dāng)x[1,24131又∵11

        初中數(shù)學(xué)的知識點(diǎn)總結(jié)15

          一、圓

          1、圓的有關(guān)性質(zhì)

          在一個(gè)平面內(nèi),線段OA繞它固定的一個(gè)端點(diǎn)O旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)A隨之旋轉(zhuǎn)所形成的圖形叫圓,固定的端點(diǎn)O叫圓心,線段OA叫半徑。

          由圓的意義可知:

          圓上各點(diǎn)到定點(diǎn)(圓心O)的距離等于定長的點(diǎn)都在圓上。

          就是說:圓是到定點(diǎn)的距離等于定長的點(diǎn)的集合,圓的內(nèi)部可以看作是到圓。心的距離小于半徑的點(diǎn)的集合。

          圓的外部可以看作是到圓心的距離大于半徑的點(diǎn)的集合。連結(jié)圓上任意兩點(diǎn)的線段叫做弦,經(jīng)過圓心的弦叫直徑。圓上任意兩點(diǎn)間的部分叫圓弧,簡稱弧。

          圓的任意一條直徑的兩個(gè)端點(diǎn)分圓成兩條弧,每一條弧都叫半圓,大于半圓的弧叫優(yōu)弧;小于半圓的弧叫劣弧。由弦及其所對的弧組成的圓形叫弓形。

          圓心相同,半徑不相等的兩個(gè)圓叫同心圓。

          能夠重合的兩個(gè)圓叫等圓。

          同圓或等圓的半徑相等。

          在同圓或等圓中,能夠互相重合的弧叫等弧。

          二、過三點(diǎn)的圓

          l、過三點(diǎn)的圓

          過三點(diǎn)的圓的作法:利用中垂線找圓心

          定理不在同一直線上的三個(gè)點(diǎn)確定一個(gè)圓。

          經(jīng)過三角形各頂點(diǎn)的圓叫三角形的外接圓,外接圓的圓心叫外心,這個(gè)三角形叫圓的內(nèi)接三角形。

          2、反證法

          反證法的三個(gè)步驟:

         、偌僭O(shè)命題的結(jié)論不成立;

         、趶倪@個(gè)假設(shè)出發(fā),經(jīng)過推理論證,得出矛盾;

         、塾擅艿贸黾僭O(shè)不正確,從而肯定命題的結(jié)論正確。

          例如:求證三角形中最多只有一個(gè)角是鈍角。

          證明:設(shè)有兩個(gè)以上是鈍角

          則兩個(gè)鈍角之和>180°

          與三角形內(nèi)角和等于180°矛盾。

          ∴不可能有二個(gè)以上是鈍角。

          即最多只能有一個(gè)是鈍角。

          三、垂直于弦的直徑

          圓是軸對稱圖形,經(jīng)過圓心的每一條直線都是它的對稱軸。

          垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧。

          推理1:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對兩條弧。

          弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧。

          平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一個(gè)條弧。

          推理2:圓兩條平行弦所夾的弧相等。

          四、圓心角、弧、弦、弦心距之間的關(guān)系

          圓是以圓心為對稱中心的中心對稱圖形。

          實(shí)際上,圓繞圓心旋轉(zhuǎn)任意一個(gè)角度,都能夠與原來的圖形重合。

          頂點(diǎn)是圓心的角叫圓心角,從圓心到弦的`距離叫弦心距。

          定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距相等。

          推理:在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩條弦的弦心距中,有一組量相等,那么它們所對應(yīng)的其余各組量都分別相等。

          五、圓周角

          頂點(diǎn)在圓上,并且兩邊都和圓相交的角叫圓周角。

          推理1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。

          推理2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。

          推理3:如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形。

          由于以上的定理、推理,所添加輔助線往往是添加能構(gòu)成直徑上的圓周角的輔助線。

        【初中數(shù)學(xué)的知識點(diǎn)總結(jié)】相關(guān)文章:

        初中數(shù)學(xué)極差知識點(diǎn)總結(jié)07-19

        初中數(shù)學(xué)圓知識點(diǎn)總結(jié)04-30

        初中數(shù)學(xué)知識點(diǎn)總結(jié)07-14

        初中數(shù)學(xué)所有函數(shù)的知識點(diǎn)總結(jié)11-22

        初中數(shù)學(xué)幾何知識點(diǎn)總結(jié)范文12-13

        人教版初中數(shù)學(xué)知識點(diǎn)總結(jié)07-21

        初中數(shù)學(xué)知識點(diǎn)總結(jié)優(yōu)秀02-24

        初中數(shù)學(xué)知識點(diǎn)點(diǎn)和面的知識點(diǎn)總結(jié)04-23

        初中數(shù)學(xué)線與角的關(guān)系知識點(diǎn)總結(jié)04-13