久久综合丝袜日本网手机版,日韩欧美中文字幕在线三区,亚洲精品国产品国语在线,极品在线观看视频婷婷

      • 高一數(shù)學必修一知識點總結(jié)

        時間:2024-05-19 14:00:42 總結(jié)范文 我要投稿

        高一數(shù)學必修一知識點總結(jié)

          總結(jié)在一個時期、一個年度、一個階段對學習和工作生活等情況加以回顧和分析的一種書面材料,它可使零星的、膚淺的、表面的感性認知上升到全面的、系統(tǒng)的、本質(zhì)的理性認識上來,因此我們要做好歸納,寫好總結(jié)。但是卻發(fā)現(xiàn)不知道該寫些什么,以下是小編收集整理的高一數(shù)學必修一知識點總結(jié),希望對大家有所幫助。

        高一數(shù)學必修一知識點總結(jié)

        高一數(shù)學必修一知識點總結(jié)1

          一、集合及其表示

          1、集合的含義:

          “集合”這個詞首先讓我們想到的是上體育課或者開會時老師經(jīng)常喊的“全體集合”。數(shù)學上的“集合”和這個意思是一樣的,只不過一個是動詞一個是名詞而已。

          所以集合的含義是:某些指定的對象集在一起就成為一個集合,簡稱集,其中每一個對象叫元素。比如高一二班集合,那么所有高一二班的同學就構(gòu)成了一個集合,每一個同學就稱為這個集合的元素。

          2、集合的表示

          通常用大寫字母表示集合,用小寫字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,記作a∈A,相反,d不屬于集合A,記作d?A。

          有一些特殊的集合需要記憶:

          非負整數(shù)集(即自然數(shù)集)N正整數(shù)集N_或N+

          整數(shù)集Z有理數(shù)集Q實數(shù)集R

          集合的表示方法:列舉法與描述法。

          ①列舉法:{a,b,c……}

         、诿枋龇ǎ簩⒓现械脑氐墓矊傩悦枋龀鰜。如{x?R|x-3>2},{x|x-3>2},{(x,y)|y=x2+1}

         、壅Z言描述法:例:{不是直角三角形的三角形}

          例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}

          強調(diào):描述法表示集合應注意集合的代表元素

          A={(x,y)|y=x2+3x+2}與B={y|y=x2+3x+2}不同。集合A中是數(shù)組元素(x,y),集合B中只有元素y。

          3、集合的三個特性

         。1)無序性

          指集合中的元素排列沒有順序,如集合A={1,2},集合B={2,1},則集合A=B。

          例題:集合A={1,2},B={a,b},若A=B,求a、b的值。

          解:,A=B

          注意:該題有兩組解。

         。2)互異性

          指集合中的元素不能重復,A={2,2}只能表示為{2}

          (3)確定性

          集合的確定性是指組成集合的元素的性質(zhì)必須明確,不允許有模棱兩可、含混不清的。情況。

          集合的含義

          集合的中元素的三個特性:

          元素的確定性如:世界上的山

          元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

          元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合

          3、集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

          用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

          集合的表示方法:列舉法與描述法。

          注意:常用數(shù)集及其記法:

          非負整數(shù)集(即自然數(shù)集)記作:N

          正整數(shù)集NxN+整數(shù)集Z有理數(shù)集Q實數(shù)集R

          列舉法:{a,b,c……}

          描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。{x(R|x—3>2},{x|x—3>2}

          語言描述法:例:{不是直角三角形的三角形}

          Venn圖:

          4、集合的分類:

          有限集含有有限個元素的集合

          無限集含有無限個元素的集合

          空集不含任何元素的集合例:{x|x2=—5}

          對數(shù)函數(shù)

          對數(shù)函數(shù)的一般形式為,它實際上就是指數(shù)函數(shù)的反函數(shù)。因此指數(shù)函數(shù)里對于a的規(guī)定,同樣適用于對數(shù)函數(shù)。

          右圖給出對于不同大小a所表示的函數(shù)圖形:

          可以看到對數(shù)函數(shù)的圖形只不過的指數(shù)函數(shù)的圖形的關(guān)于直線y=x的對稱圖形,因為它們互為反函數(shù)。

         。1)對數(shù)函數(shù)的定義域為大于0的實數(shù)集合。

         。2)對數(shù)函數(shù)的值域為全部實數(shù)集合。

         。3)函數(shù)總是通過(1,0)這點。

         。4)a大于1時,為單調(diào)遞增函數(shù),并且上凸;a小于1大于0時,函數(shù)為單調(diào)遞減函數(shù),并且下凹。

         。5)顯然對數(shù)函數(shù)。

          1、函數(shù)零點的定義

          (1)對于函數(shù))(xfy,我們把方程0)(xf的實數(shù)根叫做函數(shù))(xfy)的零點。

         。2)方程0)(xf有實根函數(shù)(yfx)的圖像與x軸有交點函數(shù)(yfx)有零點。因此判斷一個函數(shù)是否有零點,有幾個零點,就是判斷方程0)(xf是否有實數(shù)根,有幾個實數(shù)根。函數(shù)零點的求法:解方程0)(xf,所得實數(shù)根就是(fx)的零點(3)變號零點與不變號零點

         、偃艉瘮(shù)(fx)在零點0x左右兩側(cè)的函數(shù)值異號,則稱該零點為函數(shù)(fx)的變號零點。②若函數(shù)(fx)在零點0x左右兩側(cè)的函數(shù)值同號,則稱該零點為函數(shù)(fx)的不變號零點。

         、廴艉瘮(shù)(fx)在區(qū)間,ab上的圖像是一條連續(xù)的曲線,則0

          2、函數(shù)零點的判定

         。1)零點存在性定理:如果函數(shù))(xfy在區(qū)間],[ba上的圖象是連續(xù)不斷的曲線,并且有(fa)(fb),那么,函數(shù)(xfy)在區(qū)間,ab內(nèi)有零點,即存在,(0bax,使得0)(0xf,這個0x也就是方程0)(xf的根。

         。2)函數(shù))(xfy零點個數(shù)(或方程0)(xf實數(shù)根的個數(shù))確定方法

         、俅鷶(shù)法:函數(shù))(xfy的零點0)(xf的根;②(幾何法)對于不能用求根公式的方程,可以將它與函數(shù))(xfy的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點。

         。3)零點個數(shù)確定

          0)(xfy有2個零點0)(xf有兩個不等實根;0)(xfy有1個零點0)(xf有兩個相等實根;0)(xfy無零點0)(xf無實根;對于二次函數(shù)在區(qū)間,ab上的零點個數(shù),要結(jié)合圖像進行確定。

          3、二分法

         。1)二分法的定義:對于在區(qū)間[,]ab上連續(xù)不斷且(fa)(fb)的函數(shù)(yfx),通過不斷地把函數(shù)(yfx)的零點所在的區(qū)間一分為二,使區(qū)間的兩個端點逐步逼近零點,進而得到零點的近似值的方法叫做二分法;

         。2)用二分法求方程的近似解的步驟:

         、俅_定區(qū)間[,]ab,驗證(fa)(fb)給定精確度e;

          ②求區(qū)間(,)ab的中點c;③計算(fc);

          (ⅰ)若(fc),則c就是函數(shù)的零點;

         。á)若(fa)(fc),則令bc(此時零點0(,)xac);(ⅲ)若(fc)(fb),則令ac(此時零點0(,)xcb);

         、芘袛嗍欠襁_到精確度e,即ab,則得到零點近似值為a(或b);否則重復②至④步。

          集合間的基本關(guān)系

          1、子集,A包含于B,記為:,有兩種可能

          (1)A是B的一部分,

          (2)A與B是同一集合,A=B,A、B兩集合中元素都相同。

          反之:集合A不包含于集合B,記作。

          如:集合A={1,2,3},B={1,2,3,4},C={1,2,3,4},三個集合的關(guān)系可以表示為,,B=C。A是C的子集,同時A也是C的真子集。

          2、真子集:如果A?B,且A?B那就說集合A是集合B的真子集,記作AB(或BA)

          3、不含任何元素的集合叫做空集,記為Φ。Φ是任何集合的子集。

          4、有n個元素的集合,含有2n個子集,2n-1個真子集,含有2n-2個非空真子集。如A={1,2,3,4,5},則集合A有25=32個子集,25-1=31個真子集,25-2=30個非空真子集。

          例:集合共有個子集。(13年高考第4題,簡單)

          練習:A={1,2,3},B={1,2,3,4},請問A集合有多少個子集,并寫出子集,B集合有多少個非空真子集,并將其寫出來。

          解析:

          集合A有3個元素,所以有23=8個子集。分別為:①不含任何元素的子集Φ;②含有1個元素的子集{1}{2}{3};③含有兩個元素的子集{1,2}{1,3}{2,3};④含有三個元素的子集{1,2,3}。

          集合B有4個元素,所以有24-2=14個非空真子集。具體的子集自己寫出來。

          此處這么羅嗦主要是為了讓同學們注意寫的順序,數(shù)學就是要講究嚴謹性和邏輯性的。一定要養(yǎng)成自己的邏輯習慣。如果就是為了提高計算能力倒不如直接去菜場賣菜算了,絕對能飛速提高的,那學數(shù)學也沒什么必要了。

          一、函數(shù)模型及其應用

          本節(jié)主要包括函數(shù)的模型、函數(shù)的應用等知識點。主要是理解函數(shù)解應用題的一般步驟靈活利用函數(shù)解答實際應用題。

          1、常見的函數(shù)模型有一次函數(shù)模型、二次函數(shù)模型、指數(shù)函數(shù)模型、對數(shù)函數(shù)模型、分段函數(shù)模型等。

          2、用函數(shù)解應用題的基本步驟是:

         。1)閱讀并且理解題意。(關(guān)鍵是數(shù)據(jù)、字母的實際意義);

         。2)設量建模;

          (3)求解函數(shù)模型;

          (4)簡要回答實際問題。

          常見考法:

          本節(jié)知識在段考和高考中考查的形式多樣,頻率較高,選擇題、填空題和解答題都有。多考查分段函數(shù)和較復雜的函數(shù)的最值等問題,屬于拔高題,難度較大。

          誤區(qū)提醒:

          1、求解應用性問題時,不僅要考慮函數(shù)本身的定義域,還要結(jié)合實際問題理解自變量的取值范圍。

          2、求解應用性問題時,首先要弄清題意,分清條件和結(jié)論,抓住關(guān)鍵詞和量,理順數(shù)量關(guān)系,然后將文字語言轉(zhuǎn)化成數(shù)學語言,建立相應的數(shù)學模型。

          【典型例題】

          例1:

         。1)某種儲蓄的月利率是0。36%,今存入本金100元,求本金與利息的和(即本息和)y(元)與所存月數(shù)x之間的函數(shù)關(guān)系式,并計算5個月后的本息和(不計復利)。

         。2)按復利計算利息的一種儲蓄,本金為a元,每期利率為r,設本利和為y,存期為x,寫出本利和y隨存期x變化的函數(shù)式。如果存入本金1000元,每期利率2。25%,試計算5期后的本利和是多少?解:(1)利息=本金×月利率×月數(shù)。y=100+100×0。36%·x=100+0。36x,當x=5時,y=101。8,∴5個月后的本息和為101。8元。

          例2:

          某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預測,A產(chǎn)品的`利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2(注:利潤與投資單位是萬元)

         。1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式。

         。2)該企業(yè)已籌集到10萬元資金,并全部投入A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能是企業(yè)獲得利潤,其利潤約為多少萬元。(精確到1萬元)。

          集合

          集合具有某種特定性質(zhì)的事物的總體。這里的“事物”可以是人,物品,也可以是數(shù)學元素。例如:

          1、分散的人或事物聚集到一起;使聚集:緊急~。

          2、數(shù)學名詞。一組具有某種共同性質(zhì)的數(shù)學元素:有理數(shù)的~。

          3、口號等等。集合在數(shù)學概念中有好多概念,如集合論:集合是現(xiàn)代數(shù)學的基本概念,專門研究集合的理論叫做集合論?低(Cantor,G.F.P.,1845年—1918年,德國數(shù)學家先驅(qū),是集合論的,目前集合論的基本思想已經(jīng)滲透到現(xiàn)代數(shù)學的所有領(lǐng)域。

          集合,在數(shù)學上是一個基礎概念。什么叫基礎概念?基礎概念是不能用其他概念加以定義的概念。集合的概念,可通過直觀、公理的方法來下“定義”。集合

          集合是把人們的直觀的或思維中的某些確定的能夠區(qū)分的對象匯合在一起,使之成為一個整體(或稱為單體),這一整體就是集合。組成一集合的那些對象稱為這一集合的元素(或簡稱為元)。

          元素與集合的關(guān)系

          元素與集合的關(guān)系有“屬于”與“不屬于”兩種。

          集合與集合之間的關(guān)系

          某些指定的對象集在一起就成為一個集合集合符號,含有有限個元素叫有限集,含有無限個元素叫無限集,空集是不含任何元素的集,記做Φ。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有傳遞性。『說明一下:如果集合A的所有元素同時都是集合B的元素,則A稱作是B的子集,寫作A?B。若A是B的子集,且A不等于B,則A稱作是B的真子集,一般寫作A?B。中學教材課本里將?符號下加了一個≠符號(如右圖),不要混淆,考試時還是要以課本為準。所有男人的集合是所有人的集合的真子集。』

          集合的幾種運算法則

          并集:以屬于A或?qū)儆贐的元素為元素的集合稱為A與B的并(集),記作A∪B(或B∪A),讀作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}交集:以屬于A且屬于B的元差集表示

          素為元素的集合稱為A與B的交(集),記作A∩B(或B∩A),讀作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}例如,全集U={1,2,3,4,5}A={1,3,5}B={1,2,5}。那么因為A和B中都有1,5,所以A∩B={1,5}。再來看看,他們兩個中含有1,2,3,5這些個元素,不管多少,反正不是你有,就是我有。那么說A∪B={1,2,3,5}。圖中的陰影部分就是A∩B。有趣的是;例如在1到105中不是3,5,7的整倍數(shù)的數(shù)有多少個。結(jié)果是3,5,7每項減集合

          1再相乘。48個。對稱差集:設A,B為集合,A與B的對稱差集A?B定義為:A?B=(A-B)∪(B-A)例如:A={a,b,c},B={b,d},則A?B={a,c,d}對稱差運算的另一種定義是:A?B=(A∪B)-(A∩B)無限集:定義:集合里含有無限個元素的集合叫做無限集有限集:令N_是正整數(shù)的全體,且N_n={1,2,3,……,n},如果存在一個正整數(shù)n,使得集合A與N_n一一對應,那么A叫做有限集合。差:以屬于A而不屬于B的元素為元素的集合稱為A與B的差(集)。記作:AB={x│x∈A,x不屬于B}。注:空集包含于任何集合,但不能說“空集屬于任何集合”。補集:是從差集中引出的概念,指屬于全集U不屬于集合A的元素組成的集合稱為集合A的補集,記作CuA,即CuA={x|x∈U,且x不屬于A}空集也被認為是有限集合。例如,全集U={1,2,3,4,5}而A={1,2,5}那么全集有而A中沒有的3,4就是CuA,是A的補集。CuA={3,4}。在信息技術(shù)當中,常常把CuA寫成~A。

          集合元素的性質(zhì)

          1.確定性:每一個對象都能確定是不是某一集合的元素,沒有確定性就不能成為集合,例如“個子高的同學”“很小的數(shù)”都不能構(gòu)成集合。這個性質(zhì)主要用于判斷一個集合是否能形成集合。

          2.獨立性:集合中的元素的個數(shù)、集合本身的個數(shù)必須為自然數(shù)。

          3.互異性:集合中任意兩個元素都是不同的對象。如寫成{1,1,2},等同于{1,2};ギ愋允辜现械脑厥菦]有重復,兩個相同的對象在同一個集合中時,只能算作這個集合的一個元素。

          4.無序性:{a,b,c}{c,b,a}是同一個集合。

          5.純粹性:所謂集合的純粹性,用個例子來表示。集合A={x|x

        高一數(shù)學必修一知識點總結(jié)2

          二次函數(shù)

          I.定義與定義表達式

          一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c

          (a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)

          則稱y為x的二次函數(shù)。

          二次函數(shù)表達式的右邊通常為二次三項式。

          II.二次函數(shù)的.三種表達式

          一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)

          頂點式:y=a(x-h)^2+k[拋物線的頂點P(h,k)]

          交點式:y=a(x-x?)(x-x?)[僅限于與x軸有交點A(x?,0)和B(x?,0)的拋物線]

          注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

          h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a

          III.二次函數(shù)的圖像

          在平面直角坐標系中作出二次函數(shù)y=x^2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線。

          IV.拋物線的性質(zhì)

          1.拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。對稱軸與拋物線的交點為拋物線的頂點P。

          特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

          2.拋物線有一個頂點P,坐標為

          P(-b/2a,(4ac-b^2)/4a)

          當-b/2a=0時,P在y軸上;當Δ=b^2-4ac=0時,P在x軸上。

          3.二次項系數(shù)a決定拋物線的開口方向和大小。

          當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。

          |a|越大,則拋物線的開口越小。

        高一數(shù)學必修一知識點總結(jié)3

          一、指數(shù)函數(shù)

          (一)指數(shù)與指數(shù)冪的運算

          1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.

          當是奇數(shù)時,正數(shù)的次方根是一個正數(shù),負數(shù)的次方根是一個負數(shù).此時,的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand).

          當是偶數(shù)時,正數(shù)的次方根有兩個,這兩個數(shù)互為相反數(shù).此時,正數(shù)的正的次方根用符號表示,負的次方根用符號-表示.正的次方根與負的次方根可以合并成±(>0).由此可得:負數(shù)沒有偶次方根;0的任何次方根都是0,記作。

          注意:當是奇數(shù)時,當是偶數(shù)時,

          2.分數(shù)指數(shù)冪

          正數(shù)的分數(shù)指數(shù)冪的意義,規(guī)定:

          0的正分數(shù)指數(shù)冪等于0,0的負分數(shù)指數(shù)冪沒有意義

          指出:規(guī)定了分數(shù)指數(shù)冪的'意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪.

          3.實數(shù)指數(shù)冪的運算性質(zhì)

          (二)指數(shù)函數(shù)及其性質(zhì)

          1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域為R.

          注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負數(shù)、零和1.

          2、指數(shù)函數(shù)的圖象和性質(zhì)

          【函數(shù)的應用】

          1、函數(shù)零點的概念:對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點。

          2、函數(shù)零點的意義:函數(shù)的零點就是方程實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標。即:

          方程有實數(shù)根函數(shù)的圖象與軸有交點函數(shù)有零點.

          3、函數(shù)零點的求法:

          求函數(shù)的零點:

          1(代數(shù)法)求方程的實數(shù)根;

          2(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點.

          4、二次函數(shù)的零點:

          二次函數(shù).

          1)△>0,方程有兩不等實根,二次函數(shù)的圖象與軸有兩個交點,二次函數(shù)有兩個零點.

          2)△=0,方程有兩相等實根(二重根),二次函數(shù)的圖象與軸有一個交點,二次函數(shù)有一個二重零點或二階零點.

          3)△<0,方程無實根,二次函數(shù)的圖象與軸無交點,二次函數(shù)無零點.

        高一數(shù)學必修一知識點總結(jié)4

          集合的運算

          運算類型交 集并 集補 集

          定義域 R定義域 R

          值域>0值域>0

          在R上單調(diào)遞增在R上單調(diào)遞減

          非奇非偶函數(shù)非奇非偶函數(shù)

          函數(shù)圖象都過定點(0,1)函數(shù)圖象都過定點(0,1)

          注意:利用函數(shù)的單調(diào)性,結(jié)合圖象還可以看出:

         。1)在[a,b]上, 值域是 或 ;

         。2)若 ,則 ; 取遍所有正數(shù)當且僅當 ;

         。3)對于指數(shù)函數(shù) ,總有 ;

          二、對數(shù)函數(shù)

         。ㄒ唬⿲(shù)

          1.對數(shù)的概念:

          一般地,如果 ,那么數(shù) 叫做以 為底 的對數(shù),記作: ( — 底數(shù), — 真數(shù), — 對數(shù)式)

          說明:○1 注意底數(shù)的限制 ,且 ;

          ○2 ;

          ○3 注意對數(shù)的書寫格式.

          兩個重要對數(shù):

          ○1 常用對數(shù):以10為底的對數(shù) ;

          ○2 自然對數(shù):以無理數(shù) 為底的對數(shù)的對數(shù) .

          指數(shù)式與對數(shù)式的互化

          冪值 真數(shù)

          = N = b

          底數(shù)

          指數(shù) 對數(shù)

         。ǘ⿲(shù)的運算性質(zhì)

          如果 ,且 , , ,那么:

          ○1 + ;

          ○2 - ;

          ○3 .

          注意:換底公式: ( ,且 ; ,且 ; ).

          利用換底公式推導下面的結(jié)論:(1) ;(2) .

          (3)、重要的公式 ①、負數(shù)與零沒有對數(shù); ②、 , ③、對數(shù)恒等式

         。ǘ⿲(shù)函數(shù)

          1、對數(shù)函數(shù)的概念:函數(shù) ,且 叫做對數(shù)函數(shù),其中 是自變量,函數(shù)的`定義域是(0,+∞).

          注意:○1 對數(shù)函數(shù)的定義與指數(shù)函數(shù)類似,都是形式定義,注意辨別。如: , 都不是對數(shù)函數(shù),而只能稱其為對數(shù)型函數(shù).

          ○2 對數(shù)函數(shù)對底數(shù)的限制: ,且 .

          2、對數(shù)函數(shù)的性質(zhì):

          a>10

          定義域x>0定義域x>0

          值域為R值域為R

          在R上遞增在R上遞減

          函數(shù)圖象都過定點(1,0)函數(shù)圖象都過定點(1,0)

         。ㄈ﹥绾瘮(shù)

          1、冪函數(shù)定義:一般地,形如 的函數(shù)稱為冪函數(shù),其中 為常數(shù).

          2、冪函數(shù)性質(zhì)歸納.

         。1)所有的冪函數(shù)在(0,+∞)都有定義并且圖象都過點(1,1);

          (2) 時,冪函數(shù)的圖象通過原點,并且在區(qū)間 上是增函數(shù).特別地,當 時,冪函數(shù)的圖象下凸;當 時,冪函數(shù)的圖象上凸;

         。3) 時,冪函數(shù)的圖象在區(qū)間 上是減函數(shù).在第一象限內(nèi),當 從右邊趨向原點時,圖象在 軸右方無限地逼近 軸正半軸,當 趨于 時,圖象在 軸上方無限地逼近 軸正半軸.

          第四章 函數(shù)的應用

          一、方程的根與函數(shù)的零點

          1、函數(shù)零點的概念:對于函數(shù) ,把使 成立的實數(shù) 叫做函數(shù) 的零點。

          2、函數(shù)零點的意義:函數(shù) 的零點就是方程 實數(shù)根,亦即函數(shù) 的圖象與 軸交點的橫坐標。

          即:方程 有實數(shù)根 函數(shù) 的圖象與 軸有交點 函數(shù) 有零點.

          3、函數(shù)零點的求法:

          ○1 (代數(shù)法)求方程 的實數(shù)根;

          ○2 (幾何法)對于不能用求根公式的方程,可以將它與函數(shù) 的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點.

          4、二次函數(shù)的零點:

          二次函數(shù) .

         。1)△>0,方程 有兩不等實根,二次函數(shù)的圖象與 軸有兩個交點,二次函數(shù)有兩個零點.

         。2)△=0,方程 有兩相等實根,二次函數(shù)的圖象與 軸有一個交點,二次函數(shù)有一個二重零點或二階零點.

         。3)△<0,方程 無實根,二次函數(shù)的圖象與 軸無交點,二次函數(shù)無零點.

          5.函數(shù)的模型

        高一數(shù)學必修一知識點總結(jié)5

          定義:

          x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。

          范圍:

          傾斜角的取值范圍是0°≤α

          理解:

          (1)注意“兩個方向”:直線向上的方向、x軸的正方向;

          (2)規(guī)定當直線和x軸平行或重合時,它的傾斜角為0度。

          意義:

          ①直線的傾斜角,體現(xiàn)了直線對x軸正向的傾斜程度;

          ②在平面直角坐標系中,每一條直線都有一個確定的傾斜角;

         、蹆A斜角相同,未必表示同一條直線。

          公式:

          k=tanα

          k>0時α∈(0°,90°)

          k

          k=0時α=0°

          當α=90°時k不存在

          ax+by+c=0(a≠0)傾斜角為A,則tanA=-a/b,A=arctan(-a/b)

          當a≠0時,傾斜角為90度,即與X軸垂直

          兩角和與差的三角函數(shù):

          cos(α+β)=cosα·cosβ-sinα·sinβ

          cos(α-β)=cosα·cosβ+sinα·sinβ

          sin(α±β)=sinα·cosβ±cosα·sinβ

          tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

          tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

          三角和的三角函數(shù):

          sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

          cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

          tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

          輔助角公式:

          Asinα+Bcosα=(A2+B2)^(1/2)sin(α+t),其中

          sint=B/(A2+B2)^(1/2)

          cost=A/(A2+B2)^(1/2)

          tant=B/A

          Asinα-Bcosα=(A2+B2)^(1/2)cos(α-t),tant=A/B

          倍角公式:

          sin(2α)=2sinα·cosα=2/(tanα+cotα)

          cos(2α)=cos2(α)-sin2(α)=2cos2(α)-1=1-2sin2(α)

          tan(2α)=2tanα/[1-tan2(α)]

          三倍角公式:

          sin(3α)=3sinα-4sin3(α)=4sinα·sin(60+α)sin(60-α)

          cos(3α)=4cos3(α)-3cosα=4cosα·cos(60+α)cos(60-α)

          tan(3α)=tana·tan(π/3+a)·tan(π/3-a)

          半角公式:

          sin(α/2)=±√((1-cosα)/2)

          cos(α/2)=±√((1+cosα)/2)

          tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

          降冪公式

          sin2(α)=(1-cos(2α))/2=versin(2α)/2

          cos2(α)=(1+cos(2α))/2=covers(2α)/2

          tan2(α)=(1-cos(2α))/(1+cos(2α))

          萬能公式:

          sinα=2tan(α/2)/[1+tan2(α/2)]

          cosα=[1-tan2(α/2)]/[1+tan2(α/2)]

          tanα=2tan(α/2)/[1-tan2(α/2)]

          積化和差公式:

          sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

          cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

          cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

          sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

          和差化積公式:

          sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

          sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

          cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

          cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

          二面角

          (1)半平面:平面內(nèi)的一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。

          (2)二面角:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]

          (3)二面角的棱:這一條直線叫做二面角的棱。

          (4)二面角的面:這兩個半平面叫做二面角的`面。

          (5)二面角的平面角:以二面角的棱上任意一點為端點,在兩個面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。

          (6)直二面角:平面角是直角的二面角叫做直二面角。

        高一數(shù)學必修一知識點總結(jié)6

          1.二次函數(shù)y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸如下表:

          解析式

          頂點坐標

          對稱軸

          y=ax^2

          (0,0)

          x=0

          y=a(x-h)^2

          (h,0)

          x=h

          y=a(x-h)^2+k

          (h,k)

          x=h

          y=ax^2+bx+c

          (-b/2a,[4ac-b^2]/4a)

          x=-b/2a

          當h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,

          當h<0時,則向左平行移動|h|個單位得到.

          當h>0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y(tǒng)=a(x-h)^2+k的圖象;

          當h>0,k<0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)^2+k的圖象;

          當h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y(tǒng)=a(x-h)^2+k的圖象;

          當h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)^2+k的圖象;

          因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的`大體位置就很清楚了.這給畫圖象提供了方便.

          2.拋物線y=ax^2+bx+c(a≠0)的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線x=-b/2a,頂點坐標是(-b/2a,[4ac-b^2]/4a).

          3.拋物線y=ax^2+bx+c(a≠0),若a>0,當x≤-b/2a時,y隨x的增大而減小;當x≥-b/2a時,y隨x的增大而增大.若a<0,當x≤-b/2a時,y隨x的增大而增大;當x≥-b/2a時,y隨x的增大而減小.

          4.拋物線y=ax^2+bx+c的圖象與坐標軸的交點:

          (1)圖象與y軸一定相交,交點坐標為(0,c);

          (2)當△=b^2-4ac>0,圖象與x軸交于兩點A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

          (a≠0)的兩根.這兩點間的距離AB=|x?-x?|

          當△=0.圖象與x軸只有一個交點;

          當△<0.圖象與x軸沒有交點.當a>0時,圖象落在x軸的上方,x為任何實數(shù)時,都有y>0;當a<0時,圖象落在x軸的下方,x為任何實數(shù)時,都有y<0.

          5.拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當x=-b/2a時,y最小(大)值=(4ac-b^2)/4a.

          頂點的橫坐標,是取得最值時的自變量值,頂點的縱坐標,是最值的取值.

          6.用待定系數(shù)法求二次函數(shù)的解析式

          (1)當題給條件為已知圖象經(jīng)過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:

          y=ax^2+bx+c(a≠0).

          (2)當題給條件為已知圖象的頂點坐標或?qū)ΨQ軸時,可設解析式為頂點式:y=a(x-h)^2+k(a≠0).

          (3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設解析式為兩根式:y=a(x-x?)(x-x?)(a≠0).

          7.二次函數(shù)知識很容易與其它知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數(shù)知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現(xiàn).

        高一數(shù)學必修一知識點總結(jié)7

          棱錐

          棱錐的定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做棱錐

          棱錐的的性質(zhì):

          (1)側(cè)棱交于一點。側(cè)面都是三角形

          (2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠棱錐高的比的平方

          正棱錐

          正棱錐的定義:如果一個棱錐底面是正多邊形,并且頂點在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。

          正棱錐的性質(zhì):

          (1)各側(cè)棱交于一點且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的`高相等,它叫做正棱錐的斜高。

          (3)多個特殊的直角三角形

          esp:

          a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。

          b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。

        高一數(shù)學必修一知識點總結(jié)8

          不等式

          不等關(guān)系

          了解現(xiàn)實世界和日常生活中的不等關(guān)系,了解不等式(組)的實際背景.

          (2)一元二次不等式

         、贂䦶膶嶋H情境中抽象出一元二次不等式模型.

         、谕ㄟ^函數(shù)圖象了解一元二次不等式與相應的二次函數(shù)、一元二次方程的聯(lián)系.

         、蹠庖辉尾坏仁,對給定的一元二次不等式,會設計求解的'程序框圖.

          (3)二元一次不等式組與簡單線性規(guī)劃問題

         、贂䦶膶嶋H情境中抽象出二元一次不等式組.

          ②了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組.

         、蹠䦶膶嶋H情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決.

          (4)基本不等式:

          ①了解基本不等式的證明過程.

         、跁没静坏仁浇鉀Q簡單的(小)值問題圓的輔助線一般為連圓心與切線或者連圓心與弦中點

        高一數(shù)學必修一知識點總結(jié)9

          知識點總結(jié)

          本節(jié)知識包括函數(shù)的單調(diào)性、函數(shù)的奇偶性、函數(shù)的周期性、函數(shù)的最值、函數(shù)的對稱性和函數(shù)的圖象等知識點。函數(shù)的單調(diào)性、函數(shù)的奇偶性、函數(shù)的周期性、函數(shù)的最值、函數(shù)的對稱性是學習函數(shù)的圖象的基礎,函數(shù)的圖象是它們的綜合。所以理解了前面的幾個知識點,函數(shù)的圖象就迎刃而解了。

          一、函數(shù)的單調(diào)性

          1、函數(shù)單調(diào)性的定義

          2、函數(shù)單調(diào)性的判斷和證明:(1)定義法 (2)復合函數(shù)分析法 (3)導數(shù)證明法 (4)圖象法

          二、函數(shù)的奇偶性和周期性

          1、函數(shù)的奇偶性和周期性的定義

          2、函數(shù)的奇偶性的判定和證明方法

          3、函數(shù)的周期性的'判定方法

          三、函數(shù)的圖象

          1、函數(shù)圖象的作法 (1)描點法 (2)圖象變換法

          2、圖象變換包括圖象:平移變換、伸縮變換、對稱變換、翻折變換。

          常見考法

          本節(jié)是段考和高考必不可少的考查內(nèi)容,是段考和高考考查的重點和難點。選擇題、填空題和解答題都有,并且題目難度較大。在解答題中,它可以和高中數(shù)學的每一章聯(lián)合考查,多屬于拔高題。多考查函數(shù)的單調(diào)性、最值和圖象等。

          誤區(qū)提醒

          1、求函數(shù)的單調(diào)區(qū)間,必須先求函數(shù)的定義域,即遵循“函數(shù)問題定義域優(yōu)先的原則”。

          2、單調(diào)區(qū)間必須用區(qū)間來表示,不能用集合或不等式,單調(diào)區(qū)間一般寫成開區(qū)間,不必考慮端點問題。

          3、在多個單調(diào)區(qū)間之間不能用“或”和“ ”連接,只能用逗號隔開。

          4、判斷函數(shù)的奇偶性,首先必須考慮函數(shù)的定義域,如果函數(shù)的定義域不關(guān)于原點對稱,則函數(shù)一定是非奇非偶函數(shù)。

          5、作函數(shù)的圖象,一般是首先化簡解析式,然后確定用描點法或圖象變換法作函數(shù)的圖象。

        高一數(shù)學必修一知識點總結(jié)10

          高一數(shù)學必修一知識點

          指數(shù)函數(shù)

          (一)指數(shù)與指數(shù)冪的運算

          1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.

          當是奇數(shù)時,正數(shù)的次方根是一個正數(shù),負數(shù)的次方根是一個負數(shù).此時,的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand).

          當是偶數(shù)時,正數(shù)的次方根有兩個,這兩個數(shù)互為相反數(shù).此時,正數(shù)的正的次方根用符號表示,負的次方根用符號-表示.正的次方根與負的次方根可以合并成±(>0).由此可得:負數(shù)沒有偶次方根;0的任何次方根都是0,記作。

          注意:當是奇數(shù)時,當是偶數(shù)時,

          2.分數(shù)指數(shù)冪

          正數(shù)的分數(shù)指數(shù)冪的意義,規(guī)定:

          0的正分數(shù)指數(shù)冪等于0,0的負分數(shù)指數(shù)冪沒有意義

          指出:規(guī)定了分數(shù)指數(shù)冪的意義后,指數(shù)的`概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪.

          3.實數(shù)指數(shù)冪的運算性質(zhì)

          (二)指數(shù)函數(shù)及其性質(zhì)

          1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域為R.

          注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負數(shù)、零和1.

          2、指數(shù)函數(shù)的圖象和性質(zhì)

          高一上冊數(shù)學必修一知識點梳理

          空間幾何體表面積體積公式:

          1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)

          2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,

          3、a-邊長,S=6a2,V=a3

          4、長方體a-長,b-寬,c-高S=2(ab+ac+bc)V=abc

          5、棱柱S-h-高V=Sh

          6、棱錐S-h-高V=Sh/3

          7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3

          8、S1-上底面積,S2-下底面積,S0-中h-高,V=h(S1+S2+4S0)/6

          9、圓柱r-底半徑,h-高,C—底面周長S底—底面積,S側(cè)—,S表—表面積C=2πrS底=πr2,S側(cè)=Ch,S表=Ch+2S底,V=S底h=πr2h

          10、空心圓柱R-外圓半徑,r-內(nèi)圓半徑h-高V=πh(R^2-r^2)

          11、r-底半徑h-高V=πr^2h/3

          12、r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/313、球r-半徑d-直徑V=4/3πr^3=πd^3/6

          14、球缺h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3

          15、球臺r1和r2-球臺上、下底半徑h-高V=πh[3(r12+r22)+h2]/6

          16、圓環(huán)體R-環(huán)體半徑D-環(huán)體直徑r-環(huán)體截面半徑d-環(huán)體截面直徑V=2π2Rr2=π2Dd2/4

          17、桶狀體D-桶腹直徑d-桶底直徑h-桶高V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)

          人教版高一數(shù)學必修一知識點梳理

          1、柱、錐、臺、球的結(jié)構(gòu)特征

          (1)棱柱:

          定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

          分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱柱、四棱柱、五棱柱等。

          表示:用各頂點字母,如五棱柱或用對角線的端點字母,如五棱柱。

          幾何特征:兩底面是對應邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。

          (2)棱錐

          定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體。

          分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱錐、四棱錐、五棱錐等

          表示:用各頂點字母,如五棱錐

          幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方。

          (3)棱臺:

          定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分。

          分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱態(tài)、四棱臺、五棱臺等

          表示:用各頂點字母,如五棱臺

          幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點

          (4)圓柱:

          定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體。

          幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個矩形。

          (5)圓錐:

          定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體。

          幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側(cè)面展開圖是一個扇形。

          (6)圓臺:

          定義:用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

          幾何特征:①上下底面是兩個圓;②側(cè)面母線交于原圓錐的頂點;③側(cè)面展開圖是一個弓形。

          (7)球體:

          定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

          幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑。

          2、空間幾何體的三視圖

          定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)

          注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長度;

          俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長度和寬度;

          側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。

          3、空間幾何體的直觀圖——斜二測畫法

          斜二測畫法特點:

          ①原來與x軸平行的線段仍然與x平行且長度不變;

         、谠瓉砼cy軸平行的線段仍然與y平行,長度為原來的一半。

        高一數(shù)學必修一知識點總結(jié)11

          集合的運算

          1。交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集。

          記作AB(讀作A交B),即AB={x|xA,且xB}。

          2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的`并集。記作:AB(讀作A并B),即AB={x|xA,或xB}。

          3、交集與并集的性質(zhì):AA=A,A=,AB=BA,AA=A,A=A,AB=BA。

          4、全集與補集

          (1)補集:設S是一個集合,A是S的一個子集(即),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)

          (2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。

          (3)性質(zhì):

          ⑴CU(CUA)=A

         、(CUA)

         、(CUA)A=U

        高一數(shù)學必修一知識點總結(jié)12

          第一章:解三角形

          1、正弦定理:在C中,a、b、c分別為角、、C的對邊,R為C的外接圓的半徑,則有asinbsina2RcsinC2R.

          2、正弦定理的變形公式:①a2Rsin,b2Rsin,c2RsinC;②sin,sinb2R,sinCc2R;(正弦定理的變形經(jīng)常用在有三角函數(shù)的等式中)③a:b:csin:sin:sinC;④abcsinsinsinCsinsinsinC111bcsinabsinCacsin.222abc.

          3、三角形面積公式:SC

          4、余定理:在C中,有a2b2c22bccos,b2a2c22accos,cab2abcosC.222

          5、余弦定理的推論:cosbca2bc222,cosacb2ac222,cosCabc2ab222.

          6、設a、b、c是C的角、、C的對邊,則:①若a2b2c2,則C90為直角三角形;②若a2b2c2,則C90為銳角三角形;③若a2b2c2,則C90為鈍角三角形.

          第二章:數(shù)列

          1、數(shù)列:按照一定順序排列著的一列數(shù).

          2、數(shù)列的項:數(shù)列中的每一個數(shù).

          3、有窮數(shù)列:項數(shù)有限的數(shù)列.

          4、無窮數(shù)列:項數(shù)無限的數(shù)列.

          5、遞增數(shù)列:從第2項起,每一項都不小于它的前一項的數(shù)列.

          6、遞減數(shù)列:從第2項起,每一項都不大于它的前一項的數(shù)列.

          7、常數(shù)列:各項相等的數(shù)列.

          8、擺動數(shù)列:從第2項起,有些項大于它的前一項,有些項小于它的前一項的數(shù)列.

          9、數(shù)列的通項公式:表示數(shù)列an的第n項與序號n之間的關(guān)系的公式.

          10、數(shù)列的遞推公式:表示任一項an與它的前一項an1(或前幾項)間的關(guān)系的公式.

          11、如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),則這個數(shù)列稱為等差數(shù)列,這個常數(shù)稱為等差數(shù)列的公差.

          12、由三個數(shù)a,,b組成的等差數(shù)列可以看成最簡單的等差數(shù)列,則稱為a與b的等差中項.若bac2,則稱b為a與c的等差中項.

          13、若等差數(shù)列an的首項是a1,公差是d,則ana1n1d.通項公式的變形:①anamnmd;②a1ann1d;③d⑤danamnmana1n1;④nana1d1;

          14、若an是等差數(shù)列,且mnpq(m、n、p、q),則amanapaq;若an是等差數(shù)列,且2npq(n、p、q),則2anapaq;下角標成等差數(shù)列的項仍是等差數(shù)列;連續(xù)m項和構(gòu)成的數(shù)列成等差數(shù)列。

          15、等差數(shù)列的前n項和的公式:①Snna1an2;②Snna1nn12d.

          16、等差數(shù)列的前n項和的性質(zhì):①若項數(shù)為2nn,則S2nnanan1,且S偶S奇nd,S奇S偶anan1.②若項數(shù)為2n1n,則S2n12n1an,且S奇S偶an,S奇S偶nn1(其中S奇nan,S偶n1an).

          17、如果一個數(shù)列從第2項起,每一項與它的前一項的比等于同一個常數(shù),則這個數(shù)列稱為等比數(shù)列,這個常數(shù)稱為等比數(shù)列的公比.

          18、在a與b中間插入一個數(shù)G,使a,G,b成等比數(shù)列,則G稱為a與b的等比中項.若G2ab,則稱G為a與b的等比中項.

          19、若等比數(shù)列an的首項是a1,公比是q,則ana1q.

          20、通項公式的變形:①anamq;②a1anqn1;③qn1ana1;④qnmanam.

          21、若an是等比數(shù)列,且mnpq(m、n、p、q),則amanapaq;若an是等比數(shù)列,且2npq(n、p、q),則anapaq;下角標成等差數(shù)列的項仍是等比數(shù)列;連續(xù)m2項和構(gòu)成的數(shù)列成等比數(shù)列。

          22、等比數(shù)列an的前n項和的公式:Sna11qnaaq.1nq11q1qq1時,Sna11qa11qq,即常數(shù)項與q項系數(shù)互為相反數(shù)。

          23、等比數(shù)列的前n項和的性質(zhì):①若項數(shù)為2nn,則SS偶奇q.n②SnmSnqSm.③Sn,S2nSn,S3nS2n成等比數(shù)列.

          24、an與Sn的關(guān)系:anSnSn1S1n2n1

          一些方法:

          一、求通項公式的'方法:

          1、由數(shù)列的前幾項求通項公式:待定系數(shù)法

         、偃粝噜弮身椣鄿p后為同一個常數(shù)設為anknb,列兩個方程求解;

          ②若相鄰兩項相減兩次后為同一個常數(shù)設為anan2bnc,列三個方程求解;③若相鄰兩項相減后相除后為同一個常數(shù)設為anaq

          2、由遞推公式求通項公式:

         、偃艋喓鬄閍n1and形式,可用等差數(shù)列的通項公式代入求解;②若化簡后為an1anf(n),形式,可用疊加法求解;

         、廴艋喓鬄閍n1anq形式,可用等比數(shù)列的通項公式代入求解;

         、苋艋喓鬄閍n1kanb形式,則可化為(an1x)k(anx),從而新數(shù)列{anx}是等比數(shù)列,用等比數(shù)列求解{anx}的通項公式,再反過來求原來那個。(其中x是用待定系數(shù)法來求得)3、由求和公式求通項公式:

         、賏1S1②anSnSn1③檢驗a1是否滿足an,若滿足則為an,不滿足用分段函數(shù)寫。

          4、其他

          (1)anan1fn形式,fn便于求和,方法:迭加;

          例如:anan1n1有:anan1n1a2a13a3a24anan1n1各式相加得ana134n1a1nb,q為相除后的常數(shù),列兩個方程求解;

          n4n1(2)anan12anan1形式,同除以anan1,構(gòu)造倒數(shù)為等差數(shù)列;

          anan1anan121an1例如:anan12anan1,則1,即為以-2為公差的等差數(shù)列。anan1(3)anqan1m形式,q1,方法:構(gòu)造:anxqan1x為等比數(shù)列;

          例如:an2an12,通過待定系數(shù)法求得:an22an12,即an2等比,公比為2。(4)anqan1pnr形式:構(gòu)造:anxnyqan1xn1y為等比數(shù)列;(5)anqan1p形式,同除p,轉(zhuǎn)化為上面的幾種情況進行構(gòu)造;因為anqan1pn,則anpnqan1ppn11,若qp1轉(zhuǎn)化為(1)的方法,若不為1,轉(zhuǎn)化為(3)的方法

          二、等差數(shù)列的求和最值問題:(二次函數(shù)的配方法;通項公式求臨界項法)

         、偃簪谌鬭k0,則Sn有最大值,當n=k時取到的最大值k滿足d0a0k1a10a10ak0,則Sn有最小值,當n=k時取到的最大值k滿足d0a0k1

          三、數(shù)列求和的方法:

         、侬B加法:倒序相加,具備等差數(shù)列的相關(guān)特點的,倒序之后和為定值;

         、阱e位相減法:適用于通項公式為等差的一次函數(shù)乘以等比的數(shù)列形式,如:an2n13;n③分式時拆項累加相約法:適用于分式形式的通項公式,把一項拆成兩個或多個的差的形式。如:an1nn11n1n1,an12n12n1111等;22n12n1④一項內(nèi)含有多部分的拆開分別求和法:適用于通項中能分成兩個或幾個可以方便求和的部分,如:an2n1等;

          四、綜合性問題中

         、俚炔顢(shù)列中一些在加法和乘法中設一些數(shù)為ad和ad類型,這樣可以相加約掉,相乘為平方差;②等比數(shù)列中一些在加法和乘法中設一些數(shù)為aq和aq類型,這樣可以相乘約掉。

          第三章:不等式

          1、ab0ab;ab0ab;ab0ab.比較兩個數(shù)的大小可以用相減法;相除法;平方法;開方法;倒數(shù)法等等。

          2、不等式的性質(zhì):①abba;②ab,bcac;③abacbc;④ab,c0acbc,ab,c0acbc;⑤ab,cdacbd;⑥ab0,cd0acbd;⑦ab0ab⑧ab0nnnn,n1;anbn,n1.

          3、一元二次不等式:只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的不等式.

          4、二次函數(shù)的圖象、一元二次方程的根、一元二次不等式的解集間的關(guān)系:判別式b4ac201二次函數(shù)yaxbxc2a0的圖象有兩個相異實數(shù)根一元二次方程axbxc02有兩個相等實數(shù)根a0的根axbxc0一元二次不等式的解集2x1,2b2ax1x2b2a沒有實數(shù)根x1x2a0axbxc02xxx1或xx2bxx2aRa0xx1xx2

          5、二元一次不等式:含有兩個未知數(shù),并且未知數(shù)的次數(shù)是1的不等式.

          6、二元一次不等式組:由幾個二元一次不等式組成的不等式組.

          7、二元一次不等式(組)的解集:滿足二元一次不等式組的x和y的取值構(gòu)成有序數(shù)對x,y,所有這樣的有序數(shù)對x,y構(gòu)成的集合.

          8、在平面直角坐標系中,已知直線xyC0,坐標平面內(nèi)的點x0,y0.①若0,x0y0C0,則點x0,y0在直線xyC0的上方.②若0,x0y0C0,則點x0,y0在直線xyC0的下方.

          9、在平面直角坐標系中,已知直線xyC0.①若0,則xyC0表示直線xyC0上方的區(qū)域;xyC0表示直線xyC0下方的區(qū)域.②若0,則xyC0表示直線xyC0下方的區(qū)域;xyC0表示直線xyC0上方的區(qū)域.

          10、線性約束條件:由x,y的不等式(或方程)組成的不等式組,是x,y的線性約束條件.目標函數(shù):欲達到最大值或最小值所涉及的變量x,y的解析式.線性目標函數(shù):目標函數(shù)為x,y的一次解析式.線性規(guī)劃問題:求線性目標函數(shù)在線性約束條件下的最大值或最小值問題.可行解:滿足線性約束條件的解x,y.可行域:所有可行解組成的集合.最優(yōu)解:使目標函數(shù)取得最大值或最小值的可行解.

          11、設a、b是兩個正數(shù),則ab稱為正數(shù)a、b的算術(shù)平均數(shù),ab稱為正數(shù)a、b的幾何平均數(shù).

          12、均值不等式定理:若a0,b0,則ab2ab,即ab2ab.

          13、常用的基本不等式:①a2b22aba,bR;22②abab2a,bR;③abab2a2b2ab22a0,b0;④22a,bR.

          14、極值定理:設x、y都為正數(shù),則有s(和為定值),則當xy時,積xy取得最大值s2⑴若xy.4⑵若xyp(積為定值),則當xy時,和xy取得最小值2p.

        高一數(shù)學必修一知識點總結(jié)13

          【公式一】

          設α為任意角,終邊相同的角的同一三角函數(shù)的值相等:

          sin(2kπ+α)=sinα(k∈Z)

          cos(2kπ+α)=cosα(k∈Z)

          tan(2kπ+α)=tanα(k∈Z)

          cot(2kπ+α)=cotα(k∈Z)

          【公式二】

          設α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:

          sin(π+α)=-sinα

          cos(π+α)=-cosα

          tan(π+α)=tanα

          cot(π+α)=cotα

          【公式三】

          任意角α與-α的三角函數(shù)值之間的關(guān)系:

          sin(-α)=-sinα

          cos(-α)=cosα

          tan(-α)=-tanα

          cot(-α)=-cotα

          【公式四】

          利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:

          sin(π-α)=sinα

          cos(π-α)=-cosα

          tan(π-α)=-tanα

          cot(π-α)=-cotα

          【公式五】

          利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:

          sin(2π-α)=-sinα

          cos(2π-α)=cosα

          tan(2π-α)=-tanα

          cot(2π-α)=-cotα

          【公式六】

          π/2±α及3π/2±α與α的三角函數(shù)值之間的關(guān)系:

          sin(π/2+α)=cosα

          cos(π/2+α)=-sinα

          tan(π/2+α)=-cotα

          cot(π/2+α)=-tanα

          sin(π/2-α)=cosα

          cos(π/2-α)=sinα

          tan(π/2-α)=cotα

          cot(π/2-α)=tanα

          sin(3π/2+α)=-cosα

          cos(3π/2+α)=sinα

          tan(3π/2+α)=-cotα

          cot(3π/2+α)=-tanα

          sin(3π/2-α)=-cosα

          cos(3π/2-α)=-sinα

          tan(3π/2-α)=cotα

          cot(3π/2-α)=tanα

          (以上k∈Z)

          【高一數(shù)學函數(shù)復習資料】

          一、定義與定義式:

          自變量x和因變量y有如下關(guān)系:

          y=kx+b

          則此時稱y是x的一次函數(shù)。

          特別地,當b=0時,y是x的正比例函數(shù)。

          即:y=kx(k為常數(shù),k≠0)

          二、一次函數(shù)的性質(zhì):

          的'變化值與對應的x的變化值成正比例,比值為k

          即:y=kx+b(k為任意不為零的實數(shù)b取任何實數(shù))

          當x=0時,b為函數(shù)在y軸上的截距。

          三、一次函數(shù)的圖像及性質(zhì):

          作法與圖形:通過如下3個步驟

          (1)列表;

          (2)描點;

          (3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點,并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點)

          性質(zhì):(1)在一次函數(shù)上的任意一點P(x,y),都滿足等式:y=kx+b。(2)一次函數(shù)與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點。

          ,b與函數(shù)圖像所在象限:

          當k>0時,直線必通過一、三象限,y隨x的增大而增大;

          當k

          當b>0時,直線必通過一、二象限;

          當b=0時,直線通過原點

          當b

          特別地,當b=O時,直線通過原點O(0,0)表示的是正比例函數(shù)的圖像。

          這時,當k>0時,直線只通過一、三象限;當k

          四、確定一次函數(shù)的表達式:

          已知點A(x1,y1);B(x2,y2),請確定過點A、B的一次函數(shù)的表達式。

          (1)設一次函數(shù)的表達式(也叫解析式)為y=kx+b。

          (2)因為在一次函數(shù)上的任意一點P(x,y),都滿足等式y(tǒng)=kx+b。所以可以列出2個方程:y1=kx1+b……①和y2=kx2+b……②

          (3)解這個二元一次方程,得到k,b的值。

          (4)最后得到一次函數(shù)的表達式。

          五、一次函數(shù)在生活中的應用:

          當時間t一定,距離s是速度v的一次函數(shù)。s=vt。

          當水池抽水速度f一定,水池中水量g是抽水時間t的一次函數(shù)。設水池中原有水量S。g=S-ft。

          六、常用公式:(不全,希望有人補充)

          求函數(shù)圖像的k值:(y1-y2)/(x1-x2)

          求與x軸平行線段的中點:|x1-x2|/2

          求與y軸平行線段的中點:|y1-y2|/2

          求任意線段的長:√(x1-x2)^2+(y1-y2)^2(注:根號下(x1-x2)與(y1-y2)的平方和)

        高一數(shù)學必修一知識點總結(jié)14

          知識點1

          一、集合有關(guān)概念

          1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。

          2、集合的中元素的三個特性:

          1、元素的確定性;

          2、元素的互異性;

          3、元素的無序性

          說明:(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。

          (2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。

         。3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

         。4)集合元素的三個特性使集合本身具有了確定性和整體性。

          3、集合的表示:{…}如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

          1、用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

          2、集合的表示方法:列舉法與描述法。

          注意。撼S脭(shù)集及其記法:

          非負整數(shù)集(即自然數(shù)集)記作:N

          正整數(shù)集N或N+整數(shù)集Z有理數(shù)集Q實數(shù)集R

          關(guān)于“屬于”的概念

          集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A記作a∈A,相反,a不屬于集合A記作a?A

          列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上。

          描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。用確定的條件表示某些對象是否屬于這個集合的方法。

         、僬Z言描述法:例:{不是直角三角形的`三角形}

         、跀(shù)學式子描述法:例:不等式x—3>2的解集是{x?R|x—3>2}或{x|x—3>2}

          4、集合的分類:

          1、有限集含有有限個元素的集合

          2、無限集含有無限個元素的集合

          3、空集不含任何元素的集合例:{x|x2=—5}

          知識點2

          I、定義與定義表達式

          一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c

         。╝,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大、)

          則稱y為x的二次函數(shù)。

          二次函數(shù)表達式的右邊通常為二次三項式。

          II、二次函數(shù)的三種表達式

          一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)

          頂點式:y=a(x—h)^2+k[拋物線的頂點P(h,k)]

          交點式:y=a(x—x?)(x—x?)[僅限于與x軸有交點A(x?,0)和B(x?,0)的拋物線]

          注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

          h=—b/2ak=(4ac—b^2)/4ax?,x?=(—b±√b^2—4ac)/2a

          III、二次函數(shù)的圖像

          在平面直角坐標系中作出二次函數(shù)y=x^2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線。

          IV、拋物線的性質(zhì)

          1、拋物線是軸對稱圖形。對稱軸為直線x=—b/2a。對稱軸與拋物線的交點為拋物線的頂點P。

          特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

          2、拋物線有一個頂點P,坐標為

          P(—b/2a,(4ac—b^2)/4a)

          當—b/2a=0時,P在y軸上;當Δ=b^2—4ac=0時,P在x軸上。

          3、二次項系數(shù)a決定拋物線的開口方向和大小。

          當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。

          |a|越大,則拋物線的開口越小。

          知識點3

          1、拋物線是軸對稱圖形。對稱軸為直線

          x=—b/2a。

          對稱軸與拋物線的交點為拋物線的頂點P。

          特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

          2、拋物線有一個頂點P,坐標為

          P(—b/2a,(4ac—b’2)/4a)

          當—b/2a=0時,P在y軸上;當Δ=b’2—4ac=0時,P在x軸上。

          3、二次項系數(shù)a決定拋物線的開口方向和大小。

          當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。

          |a|越大,則拋物線的開口越小。

          4、一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。

          當a與b同號時(即ab>0),對稱軸在y軸左;

          當a與b異號時(即ab<0),對稱軸在y軸右。

          5、常數(shù)項c決定拋物線與y軸交點。

          拋物線與y軸交于(0,c)

          6、拋物線與x軸交點個數(shù)

          Δ=b’2—4ac>0時,拋物線與x軸有2個交點。

          Δ=b’2—4ac=0時,拋物線與x軸有1個交點。

          Δ=b’2—4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(shù)(x=—b±√b’2—4ac的值的相反數(shù),乘上虛數(shù)i,整個式子除以2a)

          知識點4

          對數(shù)函數(shù)

          對數(shù)函數(shù)的一般形式為,它實際上就是指數(shù)函數(shù)的反函數(shù)。因此指數(shù)函數(shù)里對于a的規(guī)定,同樣適用于對數(shù)函數(shù)。

          右圖給出對于不同大小a所表示的函數(shù)圖形:

          可以看到對數(shù)函數(shù)的圖形只不過的指數(shù)函數(shù)的圖形的關(guān)于直線y=x的對稱圖形,因為它們互為反函數(shù)。

         。1)對數(shù)函數(shù)的定義域為大于0的實數(shù)集合。

         。2)對數(shù)函數(shù)的值域為全部實數(shù)集合。

         。3)函數(shù)總是通過(1,0)這點。

         。4)a大于1時,為單調(diào)遞增函數(shù),并且上凸;a小于1大于0時,函數(shù)為單調(diào)遞減函數(shù),并且下凹。

         。5)顯然對數(shù)函數(shù)。

          知識點5

          方程的根與函數(shù)的零點

          1、函數(shù)零點的概念:對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點。

          2、函數(shù)零點的意義:函數(shù)的零點就是方程實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標。即:方程有實數(shù)根,函數(shù)的圖象與坐標軸有交點,函數(shù)有零點。

          3、函數(shù)零點的求法:

          (1)(代數(shù)法)求方程的實數(shù)根;

          (2)(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點。

          4、二次函數(shù)的零點:

         。1)△>0,方程有兩不等實根,二次函數(shù)的圖象與軸有兩個交點,二次函數(shù)有兩個零點。

         。2)△=0,方程有兩相等實根(二重根),二次函數(shù)的圖象與軸有一個交點,二次函數(shù)有一個二重零點或二階零點。

         。3)△<0,方程無實根,二次函數(shù)的圖象與軸無交點,二次函數(shù)無零點。

        高一數(shù)學必修一知識點總結(jié)15

          【基本初等函數(shù)】

          一、指數(shù)函數(shù)

         。ㄒ唬┲笖(shù)與指數(shù)冪的運算

          1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈

          當是奇數(shù)時,正數(shù)的次方根是一個正數(shù),負數(shù)的次方根是一個負數(shù)。此時,的次方根用符號表示。式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand)。

          當是偶數(shù)時,正數(shù)的次方根有兩個,這兩個數(shù)互為相反數(shù)。此時,正數(shù)的正的次方根用符號表示,負的次方根用符號—表示。正的次方根與負的次方根可以合并成±(>0)。由此可得:負數(shù)沒有偶次方根;0的任何次方根都是0,記作。

          注意:當是奇數(shù)時,當是偶數(shù)時,

          2、分數(shù)指數(shù)冪

          正數(shù)的分數(shù)指數(shù)冪的意義,規(guī)定:

          0的正分數(shù)指數(shù)冪等于0,0的負分數(shù)指數(shù)冪沒有意義

          指出:規(guī)定了分數(shù)指數(shù)冪的'意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪。

          3、實數(shù)指數(shù)冪的運算性質(zhì)

         。ǘ┲笖(shù)函數(shù)及其性質(zhì)

          1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域為R。

          注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負數(shù)、零和1。

          2、指數(shù)函數(shù)的圖象和性質(zhì)

        【高一數(shù)學必修一知識點總結(jié)】相關(guān)文章:

        高一數(shù)學必修一知識點總結(jié)范例06-23

        高一政治必修一知識點總結(jié)06-05

        高一數(shù)學必修一平面向量知識點總結(jié)06-20

        高一必修二化學知識點總結(jié)07-03

        高一物理必修一的知識點總結(jié)06-25

        高一物理必修一知識點總結(jié)06-22

        高一化學必修一知識點總結(jié)06-13

        高一物理必修一知識點總結(jié)12-10

        高一歷史必修一知識點總結(jié)最新02-07