久久综合丝袜日本网手机版,日韩欧美中文字幕在线三区,亚洲精品国产品国语在线,极品在线观看视频婷婷

      • 數(shù)學(xué)《空間點、直線、平面的位置關(guān)系》知識點總結(jié)

        時間:2022-04-09 11:34:07 總結(jié)范文 我要投稿
        • 相關(guān)推薦

        數(shù)學(xué)《空間點、直線、平面的位置關(guān)系》知識點總結(jié)

          漫長的學(xué)習(xí)生涯中,是不是聽到知識點,就立刻清醒了?知識點也可以理解為考試時會涉及到的知識,也就是大綱的分支。你知道哪些知識點是真正對我們有幫助的嗎?以下是小編幫大家整理的數(shù)學(xué)《空間點、直線、平面的位置關(guān)系》知識點總結(jié),希望對大家有所幫助。

        數(shù)學(xué)《空間點、直線、平面的位置關(guān)系》知識點總結(jié)

          重難點知識歸納

          1、平面

          (1)平面概念的理解

          直觀的理解:桌面、黑板面、平靜的水面等等都給人以平面的直觀的印象,但它們都不是平面,而僅僅是平面的一部分.

          抽象的理解:平面是平的,平面是無限延展的,平面沒有厚。

          (2)平面的表示法

         、賵D形表示法:通常用平行四邊形來表示平面,有時根據(jù)實際需要,也用其他的平面圖形來表示平面.

         、谧帜副硎荆撼S玫认ED字母表示平面.

          (3)涉及本部分內(nèi)容的符號表示有:

          ①點A在直線l內(nèi),記作;

         、邳cA不在直線l內(nèi),記作;

          ③點A在平面內(nèi),記作;

         、茳cA不在平面內(nèi),記作;

         、葜本l在平面內(nèi),記作;

          ⑥直線l不在平面內(nèi),記作;

          注意:符號的使用與集合中這四個符號的使用的區(qū)別與聯(lián)系.

          (4)平面的基本性質(zhì)

          公理1:如果一條直線的兩個點在一個平面內(nèi),那么這條直線上的所有點都在這個平面內(nèi).

          符號表示為:.

          注意:如果直線上所有的點都在一個平面內(nèi),我們也說這條直線在這個平面內(nèi),或者稱平面經(jīng)過這條直線.

          公理2:過不在一條直線上的三點,有且只有一個平面.

          符號表示為:直線AB存在唯一的平面,使得.

          注意:有且只有的含義是:有表示存在,只有表示唯一,不能用只有來代替.此公理又可表示為:不共線的三點確定一個平面.

          公理3:如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線.

          符號表示為:.

          注意:兩個平面有一條公共直線,我們說這兩個平面相交,這條公共直線就叫作兩個平面的交線。若平面、平面相交于直線l,記作.

          公理的推論:

          推論1:經(jīng)過一條直線和直線外的一點有且只有一個平面。

          推論2:經(jīng)過兩條相交直線有且只有一個平面。

          推論3:經(jīng)過兩條平行直線有且只有一個平面。

          2.空間直線

          (1)空間兩條直線的位置關(guān)系

         、傧嘟恢本:有且僅有一個公共點,可表示為;

         、谄叫兄本:在同一個平面內(nèi),沒有公共點,可表示為a//b;

          ③異面直線:不同在任何一個平面內(nèi),沒有公共點。

          (2)平行直線

          公理4:平行于同一條直線的兩條直線互相平行。

          符號表示為:設(shè)a、b、c是三條直線。

          定理:如果一個角的兩邊和另一個角的兩邊分別平行并且方向相同,那么這兩個角相等。

          (3)兩條異面直線所成的角

          注意:

          ①兩條異面直線a,b所成的角的范圍是(0,90]。

          ②兩條異面直線所成的角與點O的選擇位置無關(guān),這可由前面所講過的等角定理直接得出。

         、塾蓛蓷l異面直線所成的角的定義可得出異面直線所成角的一般方法:

          (i)在空間任取一點,這個點通常是線段的中點或端點。

          (ii)分別作兩條異面直線的平行線,這個過程通常采用平移的方法來實現(xiàn)。

          (iii)指出哪一個角為兩條異面直線所成的角,這時我們要注意兩條異面直線所成的角的范圍。

          3.空間直線與平面

          直線與平面位置關(guān)系有且只有三種:

          (1)直線在平面內(nèi):有無數(shù)個公共點;

          (2)直線與平面相交:有且只有一個公共點;

          (3)直線與平面平行:沒有公共點。

          4.平面與平面

          兩個平面之間的位置關(guān)系有且只有以下兩種:

          (1)兩個平面平行:沒有公共點;

          (2)兩個平面相交:有一條公共直線。

          拓展延續(xù)

          圓的標(biāo)準(zhǔn)方程和一般方程,知識點歸納

          圓的標(biāo)準(zhǔn)方程是(x-a)+(y-b)=r,三個參數(shù)a、b、r,即圓心坐標(biāo)為(a,b),只要求出a、b、r,這時圓的方程就被確定,因此確定圓方程,須三個獨立條件,其中圓心坐標(biāo)是圓的定位條件,半徑是圓的定形條件。 圓的一般方程為 x^2+y^2+Dx+Ey+F=0 (D^2+E^2-4F>0),(X+D/2)^2+(Y+E/2)^2=(D^2+E^2-4F)/4。圓的半徑為 √[(D^2+E^2-4F)]/2即二分之一倍的根號下D的二次方加E的二次方減四倍的F。圓心坐標(biāo)為 (-D/2,-E/2) 。

          推導(dǎo)過程

          由圓的標(biāo)準(zhǔn)方程 (x-a)^2+(y-b)^2=r^2 的左邊展開,整理得 x^2-2ax+a^2+y^2-2by+b^2-r^2=0

          在這個方程中,如果令 -2a=D,-2b=E,a^2+b^2-r^2=F

          則這個方程表示成 x^2+y^2+Dx+Ey+F=0

          圓的方程形式

         。1)x^2+y^2=1,所表示的度曲線是以O(shè)(0,0)為圓心,以1單位長度為半知徑的圓。

         。2)x^2+y^2=r^2,所表示的曲線是以O(shè)(0,0)為圓心,以r為半徑的圓。

          (3)(x-a)^2+(y-b)^2=r^2,所表示的曲線是以O(shè)(a,b)為圓心,以r為半徑的圓。

          兩圓位置關(guān)系:

          當(dāng)圓心距小于兩圓半徑之差時 兩圓內(nèi)含

          當(dāng)圓心距等于兩圓半徑之差時 兩圓內(nèi)切

          當(dāng)圓心距小于兩圓半徑之和 大于半徑之差時 兩圓相交

          當(dāng)圓心距等于兩圓半徑之和時 兩圓外切

          當(dāng)圓心距大于兩圓半徑之和時 兩圓外離

          點與圓的關(guān)系

          點P(x1,y1) 與圓(x-a)^2+(y-b)^2=r^2的位道置關(guān)系有三種。

         。1)當(dāng)(x1-a)^2+(y1-b)^2>r^2時,則點P在圓外。

         。2)當(dāng)(x1-a)^2+(y1-b)^2=r^2時,則點P在圓上。

         。3)當(dāng)(x1-a)^2+(y1-b)^2<r^2時,則點P在圓內(nèi)。

        【數(shù)學(xué)《空間點、直線、平面的位置關(guān)系》知識點總結(jié)】相關(guān)文章:

        初中數(shù)學(xué)線與角的關(guān)系知識點總結(jié)04-13

        初中數(shù)學(xué)知識點點和面的知識點總結(jié)04-23

        圖形與位置知識點總結(jié)(通用10篇)04-27

        初中數(shù)學(xué)的知識點總結(jié)12-12

        數(shù)學(xué)橢圓知識點歸納總結(jié)06-08

        初中數(shù)學(xué)極差知識點總結(jié)07-19

        小學(xué)數(shù)學(xué)知識點總結(jié)04-02

        高二數(shù)學(xué)的知識點總結(jié)02-24

        初中數(shù)學(xué)知識點總結(jié)07-14